These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24495925)

  • 21. Extracellular matrix-based hydrogels obtained from human tissues: a work still in progress.
    Gazia C; Tamburrini R; Asthana A; Chaimov D; Muir SM; Marino DI; Delbono L; Villani V; Perin L; Di Nardo P; Robertson J; Orlando G
    Curr Opin Organ Transplant; 2019 Oct; 24(5):604-612. PubMed ID: 31433307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of functionalized PHEMA micro- and nano-particles on the viscoelastic properties of fibrin-agarose biomaterials.
    Scionti G; Rodriguez-Arco L; Lopez-Lopez MT; Medina-Castillo AL; Garzón I; Alaminos M; Toledano M; Osorio R
    J Biomed Mater Res A; 2018 Mar; 106(3):738-745. PubMed ID: 29052310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of chain flexibility on cell adhesion: Semi-flexible model-based analysis of cell adhesion to hydrogels.
    Lee J; Song B; Subbiah R; Chung JJ; Choi UH; Park K; Kim SH; Oh SJ
    Sci Rep; 2019 Feb; 9(1):2463. PubMed ID: 30792420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering.
    El-Fiqi A; Lee JH; Lee EJ; Kim HW
    Acta Biomater; 2013 Dec; 9(12):9508-21. PubMed ID: 23928332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering.
    Lewandowska-Łańcucka J; Fiejdasz S; Rodzik Ł; Kozieł M; Nowakowska M
    Biomed Mater; 2015 Feb; 10(1):015020. PubMed ID: 25668107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specialty Tough Hydrogels and Their Biomedical Applications.
    Fuchs S; Shariati K; Ma M
    Adv Healthc Mater; 2020 Jan; 9(2):e1901396. PubMed ID: 31846228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poloxamine/fibrin hybrid hydrogels for non-viral gene delivery.
    Zhang J; Sen A; Cho E; Lee JS; Webb K
    J Tissue Eng Regen Med; 2017 Jan; 11(1):246-255. PubMed ID: 24889259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.
    Hong X; Stegemann JP; Deng CX
    Biomaterials; 2016 May; 88():12-24. PubMed ID: 26928595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of new biodegradable hydrogel glue for preventing alveolar air leakage.
    Araki M; Tao H; Nakajima N; Sugai H; Sato T; Hyon SH; Nagayasu T; Nakamura T
    J Thorac Cardiovasc Surg; 2007 Nov; 134(5):1241-8. PubMed ID: 17976456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering.
    Fan M; Ma Y; Mao J; Zhang Z; Tan H
    Acta Biomater; 2015 Jul; 20():60-68. PubMed ID: 25839124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Hydrogel Construct and Fibrin-based Glue Approach to Deliver Therapeutics in a Murine Myocardial Infarction Model.
    Melhem M; Jensen T; Reinkensmeyer L; Knapp L; Flewellyn J; Schook L
    J Vis Exp; 2015 Jun; (100):e52562. PubMed ID: 26132813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microengineered hydrogels for tissue engineering.
    Khademhosseini A; Langer R
    Biomaterials; 2007 Dec; 28(34):5087-92. PubMed ID: 17707502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell adhesion and accelerated detachment on the surface of temperature-sensitive chitosan and poly(N-isopropylacrylamide) hydrogels.
    Wang J; Chen L; Zhao Y; Guo G; Zhang R
    J Mater Sci Mater Med; 2009 Feb; 20(2):583-90. PubMed ID: 18853241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomatrices and biomaterials for future developments of bioprinting and biofabrication.
    Nakamura M; Iwanaga S; Henmi C; Arai K; Nishiyama Y
    Biofabrication; 2010 Mar; 2(1):014110. PubMed ID: 20811125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications.
    Zhang Y; Heher P; Hilborn J; Redl H; Ossipov DA
    Acta Biomater; 2016 Jul; 38():23-32. PubMed ID: 27134013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust and adhesive hydrogels from cross-linked poly(ethylene glycol) and silicate for biomedical use.
    Wu CJ; Wilker JJ; Schmidt G
    Macromol Biosci; 2013 Jan; 13(1):59-66. PubMed ID: 23335554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sealing effect of rapidly curable gelatin-poly (L-glutamic acid) hydrogel glue on lung air leak.
    Otani Y; Tabata Y; Ikada Y
    Ann Thorac Surg; 1999 Apr; 67(4):922-6. PubMed ID: 10320229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of fibrin-gelatin hydrogel as biopaper for application in skin bioprinting: An in-vitro study.
    Hakam MS; Imani R; Abolfathi N; Fakhrzadeh H; Sharifi AM
    Biomed Mater Eng; 2016; 27(6):669-682. PubMed ID: 28234249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.