BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 24496117)

  • 1. A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites.
    Koole W; van Schendel R; Karambelas AE; van Heteren JT; Okihara KL; Tijsterman M
    Nat Commun; 2014; 5():3216. PubMed ID: 24496117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The repair of G-quadruplex-induced DNA damage.
    van Kregten M; Tijsterman M
    Exp Cell Res; 2014 Nov; 329(1):178-83. PubMed ID: 25193076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Templated Insertions: A Smoking Gun for Polymerase Theta-Mediated End Joining.
    Schimmel J; van Schendel R; den Dunnen JT; Tijsterman M
    Trends Genet; 2019 Sep; 35(9):632-644. PubMed ID: 31296341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homologous recombination is required for genome stability in the absence of DOG-1 in Caenorhabditis elegans.
    Youds JL; O'Neil NJ; Rose AM
    Genetics; 2006 Jun; 173(2):697-708. PubMed ID: 16547095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymerase Θ is a key driver of genome evolution and of CRISPR/Cas9-mediated mutagenesis.
    van Schendel R; Roerink SF; Portegijs V; van den Heuvel S; Tijsterman M
    Nat Commun; 2015 Jun; 6():7394. PubMed ID: 26077599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans.
    Kruisselbrink E; Guryev V; Brouwer K; Pontier DB; Cuppen E; Tijsterman M
    Curr Biol; 2008 Jun; 18(12):900-5. PubMed ID: 18538569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans.
    Roerink SF; van Schendel R; Tijsterman M
    Genome Res; 2014 Jun; 24(6):954-62. PubMed ID: 24614976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable G-quadruplex DNA structures promote replication-dependent genome instability.
    Rider SD; Gadgil RY; Hitch DC; Damewood FJ; Zavada N; Shanahan M; Alhawach V; Shrestha R; Shin-Ya K; Leffak M
    J Biol Chem; 2022 Jun; 298(6):101947. PubMed ID: 35447109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Double strand break repair, one mechanism can hide another: alternative non-homologous end joining].
    Rass E; Grabarz A; Bertrand P; Lopez BS
    Cancer Radiother; 2012 Feb; 16(1):1-10. PubMed ID: 21737335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helicase Q promotes homology-driven DNA double-strand break repair and prevents tandem duplications.
    Kamp JA; Lemmens BBLG; Romeijn RJ; Changoer SC; van Schendel R; Tijsterman M
    Nat Commun; 2021 Dec; 12(1):7126. PubMed ID: 34880204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription arrest by a G quadruplex forming-trinucleotide repeat sequence from the human c-myb gene.
    Broxson C; Beckett J; Tornaletti S
    Biochemistry; 2011 May; 50(19):4162-72. PubMed ID: 21469677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila.
    Chan SH; Yu AM; McVey M
    PLoS Genet; 2010 Jul; 6(7):e1001005. PubMed ID: 20617203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers.
    Lemmens B; van Schendel R; Tijsterman M
    Nat Commun; 2015 Nov; 6():8909. PubMed ID: 26563448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pol32 is required for Pol zeta-dependent translesion synthesis and prevents double-strand breaks at the replication fork.
    Hanna M; Ball LG; Tong AH; Boone C; Xiao W
    Mutat Res; 2007 Dec; 625(1-2):164-76. PubMed ID: 17681555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic Scars Generated by Polymerase Theta Reveal the Versatile Mechanism of Alternative End-Joining.
    van Schendel R; van Heteren J; Welten R; Tijsterman M
    PLoS Genet; 2016 Oct; 12(10):e1006368. PubMed ID: 27755535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae.
    Capra JA; Paeschke K; Singh M; Zakian VA
    PLoS Comput Biol; 2010 Jul; 6(7):e1000861. PubMed ID: 20676380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in G-quadruplex sequence and topology differentially impacts human DNA polymerase fidelity.
    Stein M; Hile SE; Weissensteiner MH; Lee M; Zhang S; Kejnovský E; Kejnovská I; Makova KD; Eckert KA
    DNA Repair (Amst); 2022 Nov; 119():103402. PubMed ID: 36116264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms.
    Moriel-Carretero M; Aguilera A
    Mol Cell; 2010 Mar; 37(5):690-701. PubMed ID: 20227372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomes and G-quadruplexes: for better or for worse.
    Tarsounas M; Tijsterman M
    J Mol Biol; 2013 Nov; 425(23):4782-9. PubMed ID: 24076189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders.
    Sankaranarayanan K; Wassom JS
    Mutat Res; 2005 Oct; 578(1-2):333-70. PubMed ID: 16084534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.