These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24496307)

  • 1. All-graphene planar self-switching MISFEDs, Metal-Insulator-Semiconductor Field-Effect Diodes.
    Al-Dirini F; Hossain FM; Nirmalathas A; Skafidas E
    Sci Rep; 2014 Feb; 4():3983. PubMed ID: 24496307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetrically-gated graphene self-switching diodes as negative differential resistance devices.
    Al-Dirini F; Hossain FM; Nirmalathas A; Skafidas E
    Nanoscale; 2014 Jul; 6(13):7628-34. PubMed ID: 24898112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model.
    Wu Y; Childs PA
    Nanoscale Res Lett; 2011 Dec; 6(1):62. PubMed ID: 27502683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Effective Conductance Modulation in Planar Silicene Field Effect Devices Due to Buckling.
    Al-Dirini F; Hossain FM; Mohammed MA; Nirmalathas A; Skafidas E
    Sci Rep; 2015 Oct; 5():14815. PubMed ID: 26441200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene nanomesh.
    Bai J; Zhong X; Jiang S; Huang Y; Duan X
    Nat Nanotechnol; 2010 Mar; 5(3):190-4. PubMed ID: 20154685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms.
    Zhang YH; Zhou KG; Xie KF; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2010 Feb; 21(6):065201. PubMed ID: 20057033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schottky diodes based on blue phosphorene nanoribbon homojunctions.
    Liu YH; Lu XQ; Dong MM; Zhang GP; Li ZL; Wang CK; Fu XX
    Phys Chem Chem Phys; 2022 Dec; 24(47):29057-29063. PubMed ID: 36437710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging negative capacitance ferroelectric materials for performance boosting of sub-10 nm graphene nanoribbon field-effect transistors: a quantum simulation study.
    Tamersit K; Moaiyeri MH; Jooq MKQ
    Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35947928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.
    Llinas JP; Fairbrother A; Borin Barin G; Shi W; Lee K; Wu S; Yong Choi B; Braganza R; Lear J; Kau N; Choi W; Chen C; Pedramrazi Z; Dumslaff T; Narita A; Feng X; Müllen K; Fischer F; Zettl A; Ruffieux P; Yablonovitch E; Crommie M; Fasel R; Bokor J
    Nat Commun; 2017 Sep; 8(1):633. PubMed ID: 28935943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabricating Graphene Oxide/h-BN Metal Insulator Semiconductor Diodes by Nanosecond Laser Irradiation.
    Gupta S; Joshi P; Sachan R; Narayan J
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor.
    Chabi S; Kadel K
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33182438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Active Switching of Bipolar Current Rectification in 2D Semiconductor Vertical Diodes.
    Guo Q; Zou Z; Xie Y; Lan X; Zhu G; Xu K; Jin R; Xu W; Huang G; Li Y; Wang T; Du W
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1583-1591. PubMed ID: 36537368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching and rectification of a single light-sensitive diarylethene molecule sandwiched between graphene nanoribbons.
    Cai Y; Zhang A; Feng YP; Zhang C
    J Chem Phys; 2011 Nov; 135(18):184703. PubMed ID: 22088074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility engineering and a metal-insulator transition in monolayer MoS₂.
    Radisavljevic B; Kis A
    Nat Mater; 2013 Sep; 12(9):815-20. PubMed ID: 23793161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Charge Transport in Semiconducting Armchair Graphene Nanoribbons Grown Directly on Germanium.
    Jacobberger RM; Arnold MS
    ACS Nano; 2017 Sep; 11(9):8924-8929. PubMed ID: 28880526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Insulator-Semiconductor Diode Consisting of Two-Dimensional Nanomaterials.
    Jeong H; Oh HM; Bang S; Jeong HJ; An SJ; Han GH; Kim H; Yun SJ; Kim KK; Park JC; Lee YH; Lerondel G; Jeong MS
    Nano Lett; 2016 Mar; 16(3):1858-62. PubMed ID: 26886870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics.
    Hertel S; Waldmann D; Jobst J; Albert A; Albrecht M; Reshanov S; Schöner A; Krieger M; Weber HB
    Nat Commun; 2012 Jul; 3():957. PubMed ID: 22805564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.