BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24496501)

  • 1. A tuned affinity-based staurosporine probe for in situ profiling of protein kinases.
    Cheng X; Li L; Uttamchandani M; Yao SQ
    Chem Commun (Camb); 2014 Mar; 50(22):2851-3. PubMed ID: 24496501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome profiling reveals potential cellular targets of staurosporine using a clickable cell-permeable probe.
    Shi H; Cheng X; Sze SK; Yao SQ
    Chem Commun (Camb); 2011 Oct; 47(40):11306-8. PubMed ID: 21922114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dasatinib, imatinib and staurosporine capture compounds - Complementary tools for the profiling of kinases by Capture Compound Mass Spectrometry (CCMS).
    Fischer JJ; Dalhoff C; Schrey AK; Graebner OY; Michaelis S; Andrich K; Glinski M; Kroll F; Sefkow M; Dreger M; Koester H
    J Proteomics; 2011 Dec; 75(1):160-8. PubMed ID: 21664307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling.
    Li Z; Hao P; Li L; Tan CY; Cheng X; Chen GY; Sze SK; Shen HM; Yao SQ
    Angew Chem Int Ed Engl; 2013 Aug; 52(33):8551-6. PubMed ID: 23754342
    [No Abstract]   [Full Text] [Related]  

  • 5. Structure-based rational design of staurosporine-based fluorescent probe with broad-ranging kinase affinity for kinase panel application.
    Hirozane Y; Toyofuku M; Yogo T; Tanaka Y; Sameshima T; Miyahisa I; Yoshikawa M
    Bioorg Med Chem Lett; 2019 Nov; 29(21):126641. PubMed ID: 31526603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fragment-based selection approach for the discovery of peptide macrocycles targeting protein kinases.
    Restituyo E; Camacho-Soto K; Ghosh I
    Methods Mol Biol; 2015; 1248():95-104. PubMed ID: 25616328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the inhibitor recognition of human Lyn kinase domain.
    Miyano N; Kinoshita T; Nakai R; Kirii Y; Yokota K; Tada T
    Bioorg Med Chem Lett; 2009 Dec; 19(23):6557-60. PubMed ID: 19857964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic response of staurosporine scaffold-based inhibitors to drug-resistant cancer kinase mutations.
    He Y
    Arch Pharm (Weinheim); 2020 Jun; 353(6):e1900320. PubMed ID: 32285482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tethering small molecules to a phage display library: discovery of a selective bivalent inhibitor of protein kinase A.
    Meyer SC; Shomin CD; Gaj T; Ghosh I
    J Am Chem Soc; 2007 Nov; 129(45):13812-3. PubMed ID: 17944472
    [No Abstract]   [Full Text] [Related]  

  • 10. Staurosporine tethered peptide ligands that target cAMP-dependent protein kinase (PKA): optimization and selectivity profiling.
    Shomin CD; Meyer SC; Ghosh I
    Bioorg Med Chem; 2009 Sep; 17(17):6196-202. PubMed ID: 19674907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a novel fluorescent probe for fluorescence correlation spectroscopic detection of kinase inhibitors.
    Kawaguchi M; Terai T; Utata R; Kato M; Tsuganezawa K; Tanaka A; Kojima H; Okabe T; Nagano T
    Bioorg Med Chem Lett; 2008 Jul; 18(13):3752-5. PubMed ID: 18524589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional interrogation of the kinome using nucleotide acyl phosphates.
    Patricelli MP; Szardenings AK; Liyanage M; Nomanbhoy TK; Wu M; Weissig H; Aban A; Chun D; Tanner S; Kozarich JW
    Biochemistry; 2007 Jan; 46(2):350-8. PubMed ID: 17209545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase inhibition of clinically important staurosporine analogues.
    Gani OA; Engh RA
    Nat Prod Rep; 2010 Apr; 27(4):489-98. PubMed ID: 20336234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Docking simulation study and kinase selectivity of f152A1 and its analogs.
    Ikemori-Kawada M; Inoue A; Goto M; Wang YJ; Kawakami Y
    J Chem Inf Model; 2012 Aug; 52(8):2059-68. PubMed ID: 22830536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A priori inference of cross reactivity for drug-targeted kinases.
    Fernandez A; Maddipati S
    J Med Chem; 2006 Jun; 49(11):3092-100. PubMed ID: 16722629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome-wide identification of staurosporine-binding kinases using capture compound mass spectrometry.
    Fischer JJ; Graebner NeƩ Baessler OY; Dreger M
    Methods Mol Biol; 2012; 795():135-47. PubMed ID: 21960220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of human Fyn kinase domain complexed with staurosporine.
    Kinoshita T; Matsubara M; Ishiguro H; Okita K; Tada T
    Biochem Biophys Res Commun; 2006 Aug; 346(3):840-4. PubMed ID: 16782058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the origins of enzyme inhibitor selectivity and promiscuity: a case study of protein kinase binding to staurosporine.
    Tanramluk D; Schreyer A; Pitt WR; Blundell TL
    Chem Biol Drug Des; 2009 Jul; 74(1):16-24. PubMed ID: 19519740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes.
    Shi H; Zhang CJ; Chen GY; Yao SQ
    J Am Chem Soc; 2012 Feb; 134(6):3001-14. PubMed ID: 22242683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.