These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24496676)

  • 1. Role of Wnt/β-catenin signaling pathway in the mechanism of calcification of aortic valve.
    Gu GJ; Chen T; Zhou HM; Sun KX; Li J
    J Huazhong Univ Sci Technolog Med Sci; 2014 Feb; 34(1):33-36. PubMed ID: 24496676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of oxLDL on aortic valve calcification via the Wnt/ β-catenin signaling pathway: an important molecular mechanism.
    Gao X; Zhang L; Gu G; Wu PH; Jin S; Hu W; Zhan C; Li J; Li Y
    J Heart Valve Dis; 2015 Mar; 24(2):190-6. PubMed ID: 26204684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of oxidized low density lipoprotein on transformation of valvular myofibroblasts to osteoblast-like phenotype.
    Chen D; Shen YL; Hu WL; Chen ZP; Li YS
    J Huazhong Univ Sci Technolog Med Sci; 2015 Jun; 35(3):362-367. PubMed ID: 26072074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin II promotes an osteoblast-like phenotype in porcine aortic valve myofibroblasts.
    Xie C; Shen Y; Hu W; Chen Z; Li Y
    Aging Clin Exp Res; 2016 Apr; 28(2):181-7. PubMed ID: 26197716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mechanism of tanshinone II A in inhibiting transformation of aortic valvular myofibroblast to osteoblast-like phenotype].
    Shen YN; Hu WL; Chen ZP; Cai L; Li YS
    Zhongguo Zhong Yao Za Zhi; 2015 Sep; 40(18):3636-43. PubMed ID: 26983213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MiR-138-5p targets RUNX2 to inhibit osteogenic differentiation of aortic valve interstitial cells via Wnt/β-catenin signaling pathway.
    Yan F; Huo Q; Zhang W; Wu T; Dilimulati D; Shi L
    BMC Cardiovasc Disord; 2022 Feb; 22(1):24. PubMed ID: 35109802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model.
    Jenke A; Kistner J; Saradar S; Chekhoeva A; Yazdanyar M; Bergmann AK; Rötepohl MV; Lichtenberg A; Akhyari P
    Am J Physiol Heart Circ Physiol; 2020 Nov; 319(5):H1123-H1141. PubMed ID: 32986963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluoride promotes osteoblastic differentiation through canonical Wnt/β-catenin signaling pathway.
    Pan L; Shi X; Liu S; Guo X; Zhao M; Cai R; Sun G
    Toxicol Lett; 2014 Feb; 225(1):34-42. PubMed ID: 24300170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GSK-3β inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation.
    Amirhosseini M; Madsen RV; Escott KJ; Bostrom MP; Ross FP; Fahlgren A
    J Cell Physiol; 2018 Mar; 233(3):2398-2408. PubMed ID: 28731198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for Galectin-3 in Calcific Aortic Valve Stenosis.
    Sádaba JR; Martínez-Martínez E; Arrieta V; Álvarez V; Fernández-Celis A; Ibarrola J; Melero A; Rossignol P; Cachofeiro V; López-Andrés N
    J Am Heart Assoc; 2016 Nov; 5(11):. PubMed ID: 27815266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of WNT1 c.110 T>C and c.505G>T mutations on osteoblast differentiation via the WNT1/β-catenin signaling pathway.
    Zhang B; Li R; Wang W; Zhou X; Luo B; Zhu Z; Zhang X; Ding A
    J Orthop Surg Res; 2021 Jun; 16(1):359. PubMed ID: 34078411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endoplasmic reticulum stress participates in aortic valve calcification in hypercholesterolemic animals.
    Cai Z; Li F; Gong W; Liu W; Duan Q; Chen C; Ni L; Xia Y; Cianflone K; Dong N; Wang DW
    Arterioscler Thromb Vasc Biol; 2013 Oct; 33(10):2345-54. PubMed ID: 23928865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Noncanonical Wnt Signaling Pathway in Human Aortic Valve Calcification.
    Albanese I; Yu B; Al-Kindi H; Barratt B; Ott L; Al-Refai M; de Varennes B; Shum-Tim D; Cerruti M; Gourgas O; Rhéaume E; Tardif JC; Schwertani A
    Arterioscler Thromb Vasc Biol; 2017 Mar; 37(3):543-552. PubMed ID: 27932350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of glycogen synthase kinase-3beta attenuates glucocorticoid-induced bone loss.
    Wang FS; Ko JY; Weng LH; Yeh DW; Ke HJ; Wu SL
    Life Sci; 2009 Nov; 85(19-20):685-92. PubMed ID: 19782693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment with XAV-939 prevents in vitro calcification of human valvular interstitial cells.
    Dittfeld C; Reimann G; Mieting A; Büttner P; Jannasch A; Plötze K; Steiner G; Tugtekin SM; Matschke K
    PLoS One; 2018; 13(12):e0208774. PubMed ID: 30532256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miRNA-141 is a novel regulator of BMP-2-mediated calcification in aortic stenosis.
    Yanagawa B; Lovren F; Pan Y; Garg V; Quan A; Tang G; Singh KK; Shukla PC; Kalra NP; Peterson MD; Verma S
    J Thorac Cardiovasc Surg; 2012 Jul; 144(1):256-62. PubMed ID: 22336757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ox-LDL induces PiT-1 expression in human aortic valve interstitial cells.
    Nadlonek NA; Lee JH; Weyant MJ; Meng X; Fullerton DA
    J Surg Res; 2013 Sep; 184(1):6-9. PubMed ID: 23849774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [0.5 Gy X-ray radiation promotes osteoblast differentiation by Wnt/β-Catenin signaling].
    Chen M; Dong QR; Huang Q; She C; Xu W
    Zhonghua Yi Xue Za Zhi; 2017 Jun; 97(23):1820-1825. PubMed ID: 28648006
    [No Abstract]   [Full Text] [Related]  

  • 19. Telocytes-derived extracellular vesicles alleviate aortic valve calcification by carrying miR-30b.
    Yang R; Tang Y; Chen X; Yang Y
    ESC Heart Fail; 2021 Oct; 8(5):3935-3946. PubMed ID: 34165260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mir-29b promotes human aortic valve interstitial cell calcification via inhibiting TGF-β3 through activation of wnt3/β-catenin/Smad3 signaling.
    Fang M; Wang CG; Zheng C; Luo J; Hou S; Liu K; Li X
    J Cell Biochem; 2018 Jul; 119(7):5175-5185. PubMed ID: 29227539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.