These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24496709)

  • 1. [The fine structure of chromoplasts from plasmochromous perigon-leaves of Tulipa].
    Lichtenthaler HK
    Planta; 1970 Jun; 93(2):143-51. PubMed ID: 24496709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The localization of plastidquinones and carotenoids in the chromoplasts of petals from sarothamnus scoparius (L.) wimm ex koch].
    Lichtenthaler HK
    Planta; 1970 Jun; 90(2):142-52. PubMed ID: 24500742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition and function of plastoglobuli : I. Isolation and purification from chloroplasts and chromoplasts.
    Steinmüller D; Tevini M
    Planta; 1985 Feb; 163(2):201-7. PubMed ID: 24249339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromoplasts of Tropaeolum majus L.: Structure and development.
    Falk H
    Planta; 1976 Jan; 128(1):15-22. PubMed ID: 24430601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromoplasts--the last stages in plastid development.
    Ljubesić N; Wrischer M; Devidé Z
    Int J Dev Biol; 1991 Sep; 35(3):251-8. PubMed ID: 1814407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloroplast-to-chromoplast transition envisions provitamin A biofortification in green vegetables.
    Dhami N
    Plant Cell Rep; 2021 May; 40(5):799-804. PubMed ID: 33754204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Plastoglobuli in different types of plastids from Allium cepa L].
    Lichtenthaler HK; Peveling E
    Planta; 1966 Mar; 72(1):1-13. PubMed ID: 24554152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development.
    Llorente B; Torres-Montilla S; Morelli L; Florez-Sarasa I; Matus JT; Ezquerro M; D'Andrea L; Houhou F; Majer E; Picó B; Cebolla J; Troncoso A; Fernie AR; Daròs JA; Rodriguez-Concepcion M
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21796-21803. PubMed ID: 32817419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintenance of Chloroplast Components during Chromoplast Differentiation in the Tomato Mutant Green Flesh.
    Cheung AY; McNellis T; Piekos B
    Plant Physiol; 1993 Apr; 101(4):1223-1229. PubMed ID: 12231777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromoplast biogenesis and carotenoid accumulation.
    Li L; Yuan H
    Arch Biochem Biophys; 2013 Nov; 539(2):102-9. PubMed ID: 23851381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes.
    Ytterberg AJ; Peltier JB; van Wijk KJ
    Plant Physiol; 2006 Mar; 140(3):984-97. PubMed ID: 16461379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of Carotenoid-Storage Structures in Fruits by Transmission Electron Microscopy.
    Lado J; Zacarias J; Rodrigo MJ; Zacarías L
    Methods Mol Biol; 2020; 2083():235-244. PubMed ID: 31745926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and Characterization of a Chromoplast-Specific Carotenoid-Associated Protein from Cucumis sativus Corollas.
    Smirra I; Halevy AH; Vainstein A
    Plant Physiol; 1993 Jun; 102(2):491-496. PubMed ID: 12231837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromoplast-Specific Proteins in Capsicum annuum.
    Hadjeb N; Gounaris I; Price CA
    Plant Physiol; 1988 Sep; 88(1):42-5. PubMed ID: 16666276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of sodium dodecyl sulfate with watermelon chromoplasts and examination of the organization of lycopene within the chromoplasts.
    Fish WW
    J Agric Food Chem; 2006 Oct; 54(21):8294-300. PubMed ID: 17032042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different colored Chrysanthemum × morifolium cultivars represent distinct plastid transformation and carotenoid deposit patterns.
    Huang H; Lu C; Ma S; Wang X; Dai S
    Protoplasma; 2019 Nov; 256(6):1629-1645. PubMed ID: 31267226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fruit shading enhances peel color, carotenes accumulation and chromoplast differentiation in red grapefruit.
    Lado J; Cronje P; Alquézar B; Page A; Manzi M; Gómez-Cadenas A; Stead AD; Zacarías L; Rodrigo MJ
    Physiol Plant; 2015 Aug; 154(4):469-84. PubMed ID: 25676857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sites of biosynthesis of carotenoids in Capsicum chromoplasts.
    Camara B; Bardat F; Monéger R
    Eur J Biochem; 1982 Oct; 127(2):255-8. PubMed ID: 7140767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum × morifolium.
    Lu C; Pu Y; Liu Y; Li Y; Qu J; Huang H; Dai S
    Plant Physiol Biochem; 2019 Sep; 142():415-428. PubMed ID: 31416008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red bell pepper chromoplasts exhibit in vitro import competency and membrane targeting of passenger proteins from the thylakoidal sec and DeltapH pathways but not the chloroplast signal recognition particle pathway.
    Summer EJ; Cline K
    Plant Physiol; 1999 Feb; 119(2):575-84. PubMed ID: 9952453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.