These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24496727)

  • 1. Principal components analysis of protein sequence clusters.
    Wang B; Kennedy MA
    J Struct Funct Genomics; 2014 Mar; 15(1):1-11. PubMed ID: 24496727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering co-occurring patterns and their biological significance in protein families.
    Lee ES; Fung S; Sze-To HY; Wong AK
    BMC Bioinformatics; 2014; 15 Suppl 12(Suppl 12):S2. PubMed ID: 25474736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis.
    Li ZC; Zhou XB; Dai Z; Zou XY
    Amino Acids; 2009 Jul; 37(2):415-25. PubMed ID: 18726140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids.
    Li Y; Song T; Yang J; Zhang Y; Yang J
    PLoS One; 2016; 11(12):e0167430. PubMed ID: 27918587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping sequence to feature vector using numerical representation of codons targeted to amino acids for alignment-free sequence analysis.
    Das JK; Sengupta A; Choudhury PP; Roy S
    Gene; 2021 Jan; 766():145096. PubMed ID: 32919006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting secondary structures of proteins. Recognizing properties of amino acids with the logical analysis of data algorithm.
    Błazewicz J; Hammer PL; Lukasiak P
    IEEE Eng Med Biol Mag; 2005; 24(3):88-94. PubMed ID: 15971846
    [No Abstract]   [Full Text] [Related]  

  • 7. Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property.
    Zhong W; Altun G; Harrison R; Tai PC; Pan Y
    IEEE Trans Nanobioscience; 2005 Sep; 4(3):255-65. PubMed ID: 16220690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pairwise protein structure alignment based on an orientation-independent backbone representation.
    Ye J; Janardan R; Liu S
    J Bioinform Comput Biol; 2004 Dec; 2(4):699-717. PubMed ID: 15617162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BiasViz: visualization of amino acid biased regions in protein alignments.
    Huska MR; Buschmann H; Andrade-Navarro MA
    Bioinformatics; 2007 Nov; 23(22):3093-4. PubMed ID: 17921493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eigenvalue analysis of amino acid substitution matrices reveals a sharp transition of the mode of sequence conservation in proteins.
    Kinjo AR; Nishikawa K
    Bioinformatics; 2004 Nov; 20(16):2504-8. PubMed ID: 15130930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ProClust: improved clustering of protein sequences with an extended graph-based approach.
    Pipenbacher P; Schliep A; Schneckener S; Schönhuth A; Schomburg D; Schrader R
    Bioinformatics; 2002; 18 Suppl 2():S182-91. PubMed ID: 12386002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated annealing algorithm for the multiple sequence alignment problem: the approach of polymers in a random medium.
    Hernández-Guía M; Mulet R; Rodríguez-Pérez S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031915. PubMed ID: 16241490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering of amino acids for protein secondary structure prediction.
    Zheng WM
    J Bioinform Comput Biol; 2004 Jun; 2(2):333-42. PubMed ID: 15297985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust sequence alignment using evolutionary rates coupled with an amino acid substitution matrix.
    Ndhlovu A; Hazelhurst S; Durand PM
    BMC Bioinformatics; 2015 Aug; 16():255. PubMed ID: 26269100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metric space of proteins-comparative study of clustering algorithms.
    Sasson O; Linial N; Linial M
    Bioinformatics; 2002; 18 Suppl 1():S14-21. PubMed ID: 12169526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of functional specificity determinants from protein sequences using log-likelihood ratios.
    Pei J; Cai W; Kinch LN; Grishin NV
    Bioinformatics; 2006 Jan; 22(2):164-71. PubMed ID: 16278237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of protein coarse contact maps.
    Vullo A; Frasconi P
    J Bioinform Comput Biol; 2003 Jul; 1(2):411-31. PubMed ID: 15290778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of unfolded segments in a protein sequence based on amino acid composition.
    Coeytaux K; Poupon A
    Bioinformatics; 2005 May; 21(9):1891-900. PubMed ID: 15657106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino Acid Principal Component Analysis (AAPCA) and its applications in protein structural class prediction.
    Du QS; Jiang ZQ; He WZ; Li DP; Chou KC
    J Biomol Struct Dyn; 2006 Jun; 23(6):635-40. PubMed ID: 16615809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein secondary structure based on residue pairs.
    Liu X; Zhang LM; Zheng WM
    J Bioinform Comput Biol; 2004 Jun; 2(2):343-52. PubMed ID: 15297986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.