These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 24496973)
1. The localization of 2,4-D in leaf tissue. Hallam ND; Sargent JA Planta; 1970 Dec; 94(4):291-5. PubMed ID: 24496973 [TBL] [Abstract][Full Text] [Related]
2. Effect of Chloramphenicol on Formation of Chloroplast Structure and Protein During Greening of Etiolated Leaves of Phaseolus vulgaris. Margulies MM Plant Physiol; 1966 Jun; 41(6):992-1003. PubMed ID: 16656367 [TBL] [Abstract][Full Text] [Related]
3. Intracellular localization of CA1P and CA1P phosphatase activity in leaves of Phaseolus vulgaris L. Moore BD; Sharkey TD; Seemann JR Photosynth Res; 1995 Sep; 45(3):219-24. PubMed ID: 24301533 [TBL] [Abstract][Full Text] [Related]
4. Variations during leaf development of the relative amounts of two bean (Phaseolus vulgaris) chloroplast tRNAs(Phe) which differ in their minor nucleotide content. Pfitzinger H; Maréchal-Drouard L; Pillay DT; Weil JH; Guillemaut P Plant Mol Biol; 1990 Jun; 14(6):969-75. PubMed ID: 2102879 [TBL] [Abstract][Full Text] [Related]
5. Anatomical alterations of Phaseolus vulgaris L. mature leaves irradiated with X-rays. De Micco V; Arena C; Aronne G Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():187-93. PubMed ID: 24176096 [TBL] [Abstract][Full Text] [Related]
6. In Vitro Protein Synthesis by Plastids of Phaseolus vulgaris. I. Localization of Activity in the Chloroplasts of a Chloroplast Containing Fraction from Developing Leaves. Parenti F; Margulies MM Plant Physiol; 1967 Sep; 42(9):1179-86. PubMed ID: 16656637 [TBL] [Abstract][Full Text] [Related]
7. Cellular Localization of CO(2) Fixation and Translocation of Metabolites. Moss DN; Rasmussen HP Plant Physiol; 1969 Jul; 44(7):1063-8. PubMed ID: 16657158 [TBL] [Abstract][Full Text] [Related]
8. Chloride localization in Phaseolus vulgaris leaves exposed to HCl gas. Endress AG; Kitasako JT; Taylor OC Cytobios; 1979; 25(99-100):139-61. PubMed ID: 546597 [TBL] [Abstract][Full Text] [Related]
9. Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts. Guo X; Castillo-Ramírez S; González V; Bustos P; Fernández-Vázquez JL; Santamaría RI; Arellano J; Cevallos MA; Dávila G BMC Genomics; 2007 Jul; 8():228. PubMed ID: 17623083 [TBL] [Abstract][Full Text] [Related]
10. Benzyladenine-induced increase in DNA content per chloroplast in intact bean leaves. Kinoshita I; Tsuji H Plant Physiol; 1984 Nov; 76(3):575-8. PubMed ID: 16663885 [TBL] [Abstract][Full Text] [Related]
11. Transport of the Auxin 2,4-Dichlorophenoxyacetic Acid Through Absiccion Zones, Pulvini, and Petioles of Phaseolus vulgaris. Jacobs WP; McCready CC; Osborne DJ Plant Physiol; 1966 Apr; 41(4):725-30. PubMed ID: 16656312 [TBL] [Abstract][Full Text] [Related]
12. Absorption and translocation of 2,4-D in plants of Memora peregrina. de Mendonça CG; Tornisielo VL; Filho RV; de Lacerda AL J Environ Sci Health B; 2005; 40(1):137-43. PubMed ID: 15656171 [TBL] [Abstract][Full Text] [Related]
13. Phase Behavior of Chloroplast and Microsomal Membranes during Leaf Senescence. McKersie BD; Thompson JE Plant Physiol; 1978 Apr; 61(4):639-43. PubMed ID: 16660353 [TBL] [Abstract][Full Text] [Related]
14. Potassium, sodium, and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves. Robinson SP; Downton WJ Arch Biochem Biophys; 1984 Jan; 228(1):197-206. PubMed ID: 6696431 [TBL] [Abstract][Full Text] [Related]
15. Morphogenetic effects of 2,4-dichlorophenoxyacetic acid on pinto bean (Phaseolus vulgaris L.) leaf explants in vitro. Saunders JW; Hosfield GL; Levi A Plant Cell Rep; 1987 Feb; 6(1):46-9. PubMed ID: 24248448 [TBL] [Abstract][Full Text] [Related]
16. Influence of Chloroplast Defects on Formation of Jasmonic Acid and Characteristic Aroma Compounds in Tea ( Li J; Zeng L; Liao Y; Gu D; Tang J; Yang Z Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30818885 [TBL] [Abstract][Full Text] [Related]
17. Rhythmic changes in the levels of fatty acids in leaves of Phaseolus aureus seedlings did not tightly depend upon high/low temperatures cycles and alterations in chloroplast ultrastructure. Aghofack-Nguemezi J Pak J Biol Sci; 2013 Dec; 16(24):1964-70. PubMed ID: 24517013 [TBL] [Abstract][Full Text] [Related]
18. In vitro Protein Synthesis by Plastids of Phaseolus vulgaris. II. The Probable Relation Between Ribonuclease Insensitive Amino Acid Incorporation and the Presence of Intact Chloroplasts. Margulies MM; Gantt E; Parenti F Plant Physiol; 1968 Apr; 43(4):495-503. PubMed ID: 16656798 [TBL] [Abstract][Full Text] [Related]
19. Divergence of chloroplast gene organization in three legumes: Pisum sativum, Vicia faba and Phaseolus vulgaris. Crouse EJ; Mubumbila M; Stummann BM; Bookjans G; Michalowski C; Bohnert HJ; Weil JH; Henningsen KW Plant Mol Biol; 1986 Mar; 7(2):143-9. PubMed ID: 24302233 [TBL] [Abstract][Full Text] [Related]
20. Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis. Keller CP; Stahlberg R; Barkawi LS; Cohen JD Plant Physiol; 2004 Mar; 134(3):1217-26. PubMed ID: 14988474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]