These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24497233)

  • 21. Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1.
    Mikami A; Newsome WT; Wurtz RH
    J Neurophysiol; 1986 Jun; 55(6):1328-39. PubMed ID: 3734858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey.
    Tinsley CJ; Webb BS; Barraclough NE; Vincent CJ; Parker A; Derrington AM
    J Neurophysiol; 2003 Aug; 90(2):930-7. PubMed ID: 12711710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies.
    Nishimoto S; Gallant JL
    J Neurosci; 2011 Oct; 31(41):14551-64. PubMed ID: 21994372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex.
    Bair W; Movshon JA
    J Neurosci; 2004 Aug; 24(33):7305-23. PubMed ID: 15317857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion.
    Newsome WT; Mikami A; Wurtz RH
    J Neurophysiol; 1986 Jun; 55(6):1340-51. PubMed ID: 3734859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional consequences of an integration of motion and stereopsis in area MT of monkey extrastriate visual cortex.
    Lappe M
    Neural Comput; 1996 Oct; 8(7):1449-61. PubMed ID: 8823942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Model for the Origin of Motion Direction Selectivity in Visual Cortex.
    Freeman AW
    J Neurosci; 2021 Jan; 41(1):89-102. PubMed ID: 33203740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Rotational Motion Perception Neural Network Based on Asymmetric Spatiotemporal Visual Information Processing.
    Hu B; Yue S; Zhang Z
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2803-2821. PubMed ID: 27831890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How MT cells analyze the motion of visual patterns.
    Rust NC; Mante V; Simoncelli EP; Movshon JA
    Nat Neurosci; 2006 Nov; 9(11):1421-31. PubMed ID: 17041595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex.
    Gizzi MS; Katz E; Schumer RA; Movshon JA
    J Neurophysiol; 1990 Jun; 63(6):1529-43. PubMed ID: 2358891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
    Beyeler M; Dutt ND; Krichmar JL
    Neural Netw; 2013 Dec; 48():109-24. PubMed ID: 23994510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of motion signaling by neurons in macaque area MT.
    Smith MA; Majaj NJ; Movshon JA
    Nat Neurosci; 2005 Feb; 8(2):220-8. PubMed ID: 15657600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining feature selection and integration--a neural model for MT motion selectivity.
    Beck C; Neumann H
    PLoS One; 2011; 6(7):e21254. PubMed ID: 21814543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiscale sampling model for motion integration.
    Sherbakov L; Yazdanbakhsh A
    J Vis; 2013 Sep; 13(11):. PubMed ID: 24080519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A selection model for motion processing in area MT of primates.
    Nowlan SJ; Sejnowski TJ
    J Neurosci; 1995 Feb; 15(2):1195-214. PubMed ID: 7869094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding visual processing of motion: completing the picture using experimentally driven computational models of MT.
    Zarei Eskikand P; Grayden DB; Kameneva T; Burkitt AN; Ibbotson MR
    Rev Neurosci; 2024 Apr; 35(3):243-258. PubMed ID: 37725397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A network model of motion processing in area MT of primates.
    Wang R
    J Comput Neurosci; 1997 Nov; 4(4):287-308. PubMed ID: 9427117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural computations governing spatiotemporal pooling of visual motion signals in humans.
    Webb BS; Ledgeway T; Rocchi F
    J Neurosci; 2011 Mar; 31(13):4917-25. PubMed ID: 21451030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey.
    O'Keefe LP; Movshon JA
    Vis Neurosci; 1998; 15(2):305-17. PubMed ID: 9605531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.