BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 24497570)

  • 41. Activation of AMP-kinase by AICAR induces apoptosis of DU-145 prostate cancer cells through generation of reactive oxygen species and activation of c-Jun N-terminal kinase.
    Sauer H; Engel S; Milosevic N; Sharifpanah F; Wartenberg M
    Int J Oncol; 2012 Feb; 40(2):501-8. PubMed ID: 22002081
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics.
    Deep G; Kumar R; Nambiar DK; Jain AK; Ramteke AM; Serkova NJ; Agarwal C; Agarwal R
    Mol Carcinog; 2017 Mar; 56(3):833-848. PubMed ID: 27533043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase.
    Ben-Shlomo S; Zvibel I; Shnell M; Shlomai A; Chepurko E; Halpern Z; Barzilai N; Oren R; Fishman S
    J Hepatol; 2011 Jun; 54(6):1214-23. PubMed ID: 21145820
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous targeting of androgen receptor (AR) and MAPK-interacting kinases (MNKs) by novel retinamides inhibits growth of human prostate cancer cell lines.
    Ramamurthy VP; Ramalingam S; Gediya L; Kwegyir-Afful AK; Njar VC
    Oncotarget; 2015 Feb; 6(5):3195-210. PubMed ID: 25605250
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rutaecarpine analogues reduce lipid accumulation in adipocytes via inhibiting adipogenesis/lipogenesis with AMPK activation and UPR suppression.
    Chen YC; Zeng XY; He Y; Liu H; Wang B; Zhou H; Chen JW; Liu PQ; Gu LQ; Ye JM; Huang ZS
    ACS Chem Biol; 2013 Oct; 8(10):2301-11. PubMed ID: 23962138
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inactivation of AMPK alters gene expression and promotes growth of prostate cancer cells.
    Zhou J; Huang W; Tao R; Ibaragi S; Lan F; Ido Y; Wu X; Alekseyev YO; Lenburg ME; Hu GF; Luo Z
    Oncogene; 2009 May; 28(18):1993-2002. PubMed ID: 19347029
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of a novel 2-oxindole fluorinated derivative as in vivo antitumor agent for prostate cancer acting via AMPK activation.
    Bort A; Quesada S; Ramos-Torres Á; Gargantilla M; Priego EM; Raynal S; Lepifre F; Gasalla JM; Rodriguez-Henche N; Castro A; Díaz-Laviada I
    Sci Rep; 2018 Mar; 8(1):4370. PubMed ID: 29531259
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of Potent Adenosine Monophosphate Activated Protein Kinase (AMPK) Activators.
    Dokla EM; Fang CS; Lai PT; Kulp SK; Serya RA; Ismail NS; Abouzid KA; Chen CS
    ChemMedChem; 2015 Nov; 10(11):1915-23. PubMed ID: 26350292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27
    Tuo L; Xiang J; Pan X; Hu J; Tang H; Liang L; Xia J; Hu Y; Zhang W; Huang A; Wang K; Tang N
    J Exp Clin Cancer Res; 2019 Feb; 38(1):50. PubMed ID: 30717766
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Responsiveness to Hedgehog Pathway Inhibitors in T-Cell Acute Lymphoblastic Leukemia Cells Is Highly Dependent on 5'AMP-Activated Kinase Inactivation.
    Tosello V; Bongiovanni D; Di Martino L; Franchin C; Zanovello P; Arrigoni G; Piovan E
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34203724
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways.
    Wang Y; Xu W; Yan Z; Zhao W; Mi J; Li J; Yan H
    J Exp Clin Cancer Res; 2018 Mar; 37(1):63. PubMed ID: 29554968
    [TBL] [Abstract][Full Text] [Related]  

  • 52. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development.
    Boudaba N; Marion A; Huet C; Pierre R; Viollet B; Foretz M
    EBioMedicine; 2018 Feb; 28():194-209. PubMed ID: 29343420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer.
    Zadra G; Ribeiro CF; Chetta P; Ho Y; Cacciatore S; Gao X; Syamala S; Bango C; Photopoulos C; Huang Y; Tyekucheva S; Bastos DC; Tchaicha J; Lawney B; Uo T; D'Anello L; Csibi A; Kalekar R; Larimer B; Ellis L; Butler LM; Morrissey C; McGovern K; Palombella VJ; Kutok JL; Mahmood U; Bosari S; Adams J; Peluso S; Dehm SM; Plymate SR; Loda M
    Proc Natl Acad Sci U S A; 2019 Jan; 116(2):631-640. PubMed ID: 30578319
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel substituted pyrazolone derivatives as AMP-activated protein kinase activators to inhibit lipid synthesis and reduce lipid accumulation in ob/ob mice.
    Zhang M; Xie ZF; Zhang RT; Chen DK; Gu M; Cui SC; Zhang YM; Zhang XW; Yu YY; Li J; Nan FJ; Li JY
    Acta Pharmacol Sin; 2018 Oct; 39(10):1622-1632. PubMed ID: 29795358
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Repurposing of nitroxoline as a potential anticancer agent against human prostate cancer: a crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation.
    Chang WL; Hsu LC; Leu WJ; Chen CS; Guh JH
    Oncotarget; 2015 Nov; 6(37):39806-20. PubMed ID: 26447757
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Concurrent regulation of LKB1 and CaMKK2 in the activation of AMPK in castrate-resistant prostate cancer by a well-defined polyherbal mixture with anticancer properties.
    MacDonald AF; Bettaieb A; Donohoe DR; Alani DS; Han A; Zhao Y; Whelan J
    BMC Complement Altern Med; 2018 Jun; 18(1):188. PubMed ID: 29914450
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteomic Comparison and MRM-Based Comparative Analysis of Metabolites Reveal Metabolic Shift in Human Prostate Cancer Cell Lines.
    Shu Q; Cai T; Chen X; Zhu HH; Xue P; Zhu N; Xie Z; Wei S; Zhang Q; Niu L; Gao WQ; Yang F
    J Proteome Res; 2015 Aug; 14(8):3390-402. PubMed ID: 26147661
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis.
    Ma J; Duan W; Han S; Lei J; Xu Q; Chen X; Jiang Z; Nan L; Li J; Chen K; Han L; Wang Z; Li X; Wu E; Huo X
    Oncotarget; 2015 Aug; 6(25):20993-1003. PubMed ID: 25895130
    [TBL] [Abstract][Full Text] [Related]  

  • 59. AMPK-independent down-regulation of cFLIP and sensitization to TRAIL-induced apoptosis by AMPK activators.
    García-García C; Fumarola C; Navaratnam N; Carling D; López-Rivas A
    Biochem Pharmacol; 2010 Mar; 79(6):853-63. PubMed ID: 19896469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AICAR and compound C negatively modulate HCC-induced primary human hepatic stellate cell activation in vitro.
    Böttcher K; Longato L; Marrone G; Mazza G; Ghemtio L; Hall A; Luong TV; Caruso S; Viollet B; Zucman-Rossi J; Pinzani M; Rombouts K
    Am J Physiol Gastrointest Liver Physiol; 2021 Apr; 320(4):G543-G556. PubMed ID: 33406006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.