BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24497638)

  • 1. Candida albicans utilizes a modified β-oxidation pathway for the degradation of toxic propionyl-CoA.
    Otzen C; Bardl B; Jacobsen ID; Nett M; Brock M
    J Biol Chem; 2014 Mar; 289(12):8151-69. PubMed ID: 24497638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans.
    Piekarska K; Mol E; van den Berg M; Hardy G; van den Burg J; van Roermund C; MacCallum D; Odds F; Distel B
    Eukaryot Cell; 2006 Nov; 5(11):1847-56. PubMed ID: 16963628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales.
    Teufel R; Kung JW; Kockelkorn D; Alber BE; Fuchs G
    J Bacteriol; 2009 Jul; 191(14):4572-81. PubMed ID: 19429610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of acetyl coenzyme A synthesis and breakdown in alternative carbon source utilization in Candida albicans.
    Carman AJ; Vylkova S; Lorenz MC
    Eukaryot Cell; 2008 Oct; 7(10):1733-41. PubMed ID: 18689527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of propionate and carnitine on the hepatic oxidation of short- and medium-chain-length fatty acids.
    Brass EP; Beyerinck RA
    Biochem J; 1988 Mar; 250(3):819-25. PubMed ID: 3134008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation.
    Alber BE; Fuchs G
    J Biol Chem; 2002 Apr; 277(14):12137-43. PubMed ID: 11821399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodobacter sphaeroides uses a reductive route via propionyl coenzyme A to assimilate 3-hydroxypropionate.
    Schneider K; Asao M; Carter MS; Alber BE
    J Bacteriol; 2012 Jan; 194(2):225-32. PubMed ID: 22056933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxisomal metabolism of propionic acid and isobutyric acid in plants.
    Lucas KA; Filley JR; Erb JM; Graybill ER; Hawes JW
    J Biol Chem; 2007 Aug; 282(34):24980-9. PubMed ID: 17580301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation.
    Strijbis K; van Roermund CW; Visser WF; Mol EC; van den Burg J; MacCallum DM; Odds FC; Paramonova E; Krom BP; Distel B
    Eukaryot Cell; 2008 Apr; 7(4):610-8. PubMed ID: 18281597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation.
    Menendez C; Bauer Z; Huber H; Gad'on N; Stetter KO; Fuchs G
    J Bacteriol; 1999 Feb; 181(4):1088-98. PubMed ID: 9973333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-relations between 3-hydroxypropionate and propionate metabolism in rat liver: relevance to disorders of propionyl-CoA metabolism.
    Wilson KA; Han Y; Zhang M; Hess JP; Chapman KA; Cline GW; Tochtrop GP; Brunengraber H; Zhang GF
    Am J Physiol Endocrinol Metab; 2017 Oct; 313(4):E413-E428. PubMed ID: 28634175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barriers to 3-Hydroxypropionate-Dependent Growth of Rhodobacter sphaeroides by Distinct Disruptions of the Ethylmalonyl Coenzyme A Pathway.
    Carlson SJ; Fleig A; Baron MK; Berg IA; Alber BE
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455284
    [No Abstract]   [Full Text] [Related]  

  • 13. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids.
    Savvi S; Warner DF; Kana BD; McKinney JD; Mizrahi V; Dawes SS
    J Bacteriol; 2008 Jun; 190(11):3886-95. PubMed ID: 18375549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans.
    Zhang YQ; Brock M; Keller NP
    Genetics; 2004 Oct; 168(2):785-94. PubMed ID: 15514053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of an acyl-CoA: carboxylate CoA-transferase from Aspergillus nidulans involved in propionyl-CoA detoxification.
    Fleck CB; Brock M
    Mol Microbiol; 2008 May; 68(3):642-56. PubMed ID: 18331473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress.
    Lee W; VanderVen BC; Fahey RJ; Russell DG
    J Biol Chem; 2013 Mar; 288(10):6788-800. PubMed ID: 23306194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fox2-dependent fatty acid ß-oxidation pathway coexists both in peroxisomes and mitochondria of the ascomycete yeast Candida lusitaniae.
    Gabriel F; Accoceberry I; Bessoule JJ; Salin B; Lucas-Guérin M; Manon S; Dementhon K; Noël T
    PLoS One; 2014; 9(12):e114531. PubMed ID: 25486052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanism of action of the antifungal agent propionate.
    Brock M; Buckel W
    Eur J Biochem; 2004 Aug; 271(15):3227-41. PubMed ID: 15265042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single acyl-CoA dehydrogenase is required for catabolism of isoleucine, valine and short-chain fatty acids in Aspergillus nidulans.
    Maggio-Hall LA; Lyne P; Wolff JA; Keller NP
    Fungal Genet Biol; 2008 Mar; 45(3):180-9. PubMed ID: 17656140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis.
    Horswill AR; Escalante-Semerena JC
    Biochemistry; 2002 Feb; 41(7):2379-87. PubMed ID: 11841231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.