BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 24497837)

  • 21. Association of prostate cancer risk with SNPs in regions containing androgen receptor binding sites captured by ChIP-On-chip analyses.
    Lu Y; Sun J; Kader AK; Kim ST; Kim JW; Liu W; Sun J; Lu D; Feng J; Zhu Y; Jin T; Zhang Z; Dimitrov L; Lowey J; Campbell K; Suh E; Duggan D; Carpten J; Trent JM; Gronberg H; Zheng SL; Isaacs WB; Xu J
    Prostate; 2012 Mar; 72(4):376-85. PubMed ID: 21671247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Allele-specific epigenetic activity in prostate cancer and normal prostate tissue implicates prostate cancer risk mechanisms.
    Shetty A; Seo JH; Bell CA; O'Connor EP; Pomerantz MM; Freedman ML; Gusev A
    Am J Hum Genet; 2021 Nov; 108(11):2071-2085. PubMed ID: 34699744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation of prostate cancer risk variants rs10993994 and rs7098889 by CRISPR/Cas9 mediated genome editing.
    Wang X; Hayes JE; Xu X; Gao X; Mehta D; Lilja HG; Klein RJ
    Gene; 2021 Feb; 768():145265. PubMed ID: 33122083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association between Prostinogen (KLK15) genetic variants and prostate cancer risk and aggressiveness in Australia and a meta-analysis of GWAS data.
    Batra J; Lose F; O'Mara T; Marquart L; Stephens C; Alexander K; Srinivasan S; Eeles RA; Easton DF; Al Olama AA; Kote-Jarai Z; Guy M; Muir K; Lophatananon A; Rahman AA; Neal DE; Hamdy FC; Donovan JL; Chambers S; Gardiner RA; Aitken J; Yaxley J; Kedda MA; Clements JA; Spurdle AB
    PLoS One; 2011; 6(11):e26527. PubMed ID: 22132073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer.
    Guo H; Ahmed M; Zhang F; Yao CQ; Li S; Liang Y; Hua J; Soares F; Sun Y; Langstein J; Li Y; Poon C; Bailey SD; Desai K; Fei T; Li Q; Sendorek DH; Fraser M; Prensner JR; Pugh TJ; Pomerantz M; Bristow RG; Lupien M; Feng FY; Boutros PC; Freedman ML; Walsh MJ; He HH
    Nat Genet; 2016 Oct; 48(10):1142-50. PubMed ID: 27526323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variants at IRX4 as prostate cancer expression quantitative trait loci.
    Xu X; Hussain WM; Vijai J; Offit K; Rubin MA; Demichelis F; Klein RJ
    Eur J Hum Genet; 2014 Apr; 22(4):558-63. PubMed ID: 24022300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin interactions and candidate genes at ten prostate cancer risk loci.
    Du M; Tillmans L; Gao J; Gao P; Yuan T; Dittmar RL; Song W; Yang Y; Sahr N; Wang T; Wei GH; Thibodeau SN; Wang L
    Sci Rep; 2016 Mar; 6():23202. PubMed ID: 26979803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Androgen receptor enhancer usage and the chromatin regulatory landscape in human prostate cancers.
    Stelloo S; Bergman AM; Zwart W
    Endocr Relat Cancer; 2019 May; 26(5):R267-R285. PubMed ID: 30865928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Networks of intergenic long-range enhancers and snpRNAs drive castration-resistant phenotype of prostate cancer and contribute to pathogenesis of multiple common human disorders.
    Glinskii AB; Ma S; Ma J; Grant D; Lim CU; Guest I; Sell S; Buttyan R; Glinsky GV
    Cell Cycle; 2011 Oct; 10(20):3571-97. PubMed ID: 22067658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 4C-seq revealed long-range interactions of a functional enhancer at the 8q24 prostate cancer risk locus.
    Cai M; Kim S; Wang K; Farnham PJ; Coetzee GA; Lu W
    Sci Rep; 2016 Mar; 6():22462. PubMed ID: 26934861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.
    Rhie SK; Guo Y; Tak YG; Yao L; Shen H; Coetzee GA; Laird PW; Farnham PJ
    Epigenetics Chromatin; 2016; 9():50. PubMed ID: 27833659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the effects of genetic variation on gene regulation in cancer in the context of 3D genome structure.
    Osman N; Shawky AE; Brylinski M
    BMC Genom Data; 2022 Feb; 23(1):13. PubMed ID: 35176995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico functional pathway annotation of 86 established prostate cancer risk variants.
    Loo LW; Fong AY; Cheng I; Le Marchand L
    PLoS One; 2015; 10(2):e0117873. PubMed ID: 25658610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome scan study of prostate cancer in Arabs: identification of three genomic regions with multiple prostate cancer susceptibility loci in Tunisians.
    Shan J; Al-Rumaihi K; Rabah D; Al-Bozom I; Kizhakayil D; Farhat K; Al-Said S; Kfoury H; Dsouza SP; Rowe J; Khalak HG; Jafri S; Aigha II; Chouchane L
    J Transl Med; 2013 May; 11():121. PubMed ID: 23668334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Refining the prostate cancer genetic association within the JAZF1 gene on chromosome 7p15.2.
    Prokunina-Olsson L; Fu YP; Tang W; Jacobs KB; Hayes RB; Kraft P; Berndt SI; Wacholder S; Yu K; Hutchinson A; Spencer Feigelson H; Thun MJ; Diver WR; Albanes D; Virtamo J; Weinstein S; Schumacher FR; Cancel-Tassin G; Cussenot O; Valeri A; Andriole GL; Crawford ED; Haiman CA; Henderson BE; Kolonel L; Le Marchand L; Siddiq A; Riboli E; Travis R; Kaaks R; Isaacs WB; Isaacs SD; Grönberg H; Wiklund F; Xu J; Vatten LJ; Hveem K; Kumle M; Tucker M; Hoover RN; Fraumeni JF; Hunter DJ; Thomas G; Chatterjee N; Chanock SJ; Yeager M
    Cancer Epidemiol Biomarkers Prev; 2010 May; 19(5):1349-55. PubMed ID: 20406958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of common non-coding variants at 1p22 that are functional for non-syndromic orofacial clefting.
    Liu H; Leslie EJ; Carlson JC; Beaty TH; Marazita ML; Lidral AC; Cornell RA
    Nat Commun; 2017 Mar; 8():14759. PubMed ID: 28287101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. H3K27ac HiChIP in prostate cell lines identifies risk genes for prostate cancer susceptibility.
    Giambartolomei C; Seo JH; Schwarz T; Freund MK; Johnson RD; Spisak S; Baca SC; Gusev A; Mancuso N; Pasaniuc B; Freedman ML
    Am J Hum Genet; 2021 Dec; 108(12):2284-2300. PubMed ID: 34822763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer.
    He H; Li W; Liyanarachchi S; Srinivas M; Wang Y; Akagi K; Wang Y; Wu D; Wang Q; Jin V; Symer DE; Shen R; Phay J; Nagy R; de la Chapelle A
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6128-33. PubMed ID: 25918370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of a negative regulatory cis-element in the enhancer core region of the prostate-specific antigen promoter: implications for intersection of androgen receptor and nuclear factor-kappaB signalling in prostate cancer cells.
    Cinar B; Yeung F; Konaka H; Mayo MW; Freeman MR; Zhau HE; Chung LW
    Biochem J; 2004 Apr; 379(Pt 2):421-31. PubMed ID: 14715080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of biologically relevant enhancers in human erythroid cells.
    Su MY; Steiner LA; Bogardus H; Mishra T; Schulz VP; Hardison RC; Gallagher PG
    J Biol Chem; 2013 Mar; 288(12):8433-8444. PubMed ID: 23341446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.