These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 24497845)

  • 1. Large inverted duplications in the human genome form via a fold-back mechanism.
    Hermetz KE; Newman S; Conneely KN; Martin CL; Ballif BC; Shaffer LG; Cody JD; Rudd MK
    PLoS Genet; 2014 Jan; 10(1):e1004139. PubMed ID: 24497845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications.
    Marotta M; Chen X; Inoshita A; Stephens R; Budd GT; Crowe JP; Lyons J; Kondratova A; Tubbs R; Tanaka H
    Breast Cancer Res; 2012 Nov; 14(6):R150. PubMed ID: 23181561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints.
    Newman S; Hermetz KE; Weckselblatt B; Rudd MK
    Am J Hum Genet; 2015 Feb; 96(2):208-20. PubMed ID: 25640679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Int22h-1/int22h-2-mediated Xq28 rearrangements: intellectual disability associated with duplications and in utero male lethality with deletions.
    El-Hattab AW; Fang P; Jin W; Hughes JR; Gibson JB; Patel GS; Grange DK; Manwaring LP; Patel A; Stankiewicz P; Cheung SW
    J Med Genet; 2011 Dec; 48(12):840-50. PubMed ID: 21984752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Genomic abnormalities in children with mental retardation and autism: the use of comparative genomic hybridization in situ (HRCGH) and molecular karyotyping with DNA-microchips (array CGH)].
    Vorsanova SG; Iurov IIu; Kurinnaia OS; Voinova VIu; Iurov IuB
    Zh Nevrol Psikhiatr Im S S Korsakova; 2013; 113(8):46-9. PubMed ID: 24077551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverted duplication with deletion: first interstitial case suggesting a novel undescribed mechanism of formation.
    Milosevic J; El Khattabi L; Roubergue A; Coussement A; Doummar D; Cuisset L; Le Tessier D; Flageul B; Viot G; Lebbar A; Dupont JM
    Am J Med Genet A; 2014 Dec; 164A(12):3180-6. PubMed ID: 25257167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Structural Variation: Mechanisms of Chromosome Rearrangements.
    Weckselblatt B; Rudd MK
    Trends Genet; 2015 Oct; 31(10):587-599. PubMed ID: 26209074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications.
    Liu P; Erez A; Nagamani SC; Bi W; Carvalho CM; Simmons AD; Wiszniewska J; Fang P; Eng PA; Cooper ML; Sutton VR; Roeder ER; Bodensteiner JB; Delgado MR; Prakash SK; Belmont JW; Stankiewicz P; Berg JS; Shinawi M; Patel A; Cheung SW; Lupski JR
    Hum Mol Genet; 2011 May; 20(10):1975-88. PubMed ID: 21355048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The involvement of U-type dicentric chromosomes in the formation of terminal deletions with or without adjacent inverted duplications.
    Kato T; Inagaki H; Miyai S; Suzuki F; Naru Y; Shinkai Y; Kato A; Kanyama K; Mizuno S; Muramatsu Y; Yamamoto T; Shinya M; Tazaki Y; Hiwatashi S; Ikeda T; Ozaki M; Kurahashi H
    Hum Genet; 2020 Nov; 139(11):1417-1427. PubMed ID: 32488466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A familial inverted duplication/deletion of 2p25.1-25.3 provides new clues on the genesis of inverted duplications.
    Bonaglia MC; Giorda R; Massagli A; Galluzzi R; Ciccone R; Zuffardi O
    Eur J Hum Genet; 2009 Feb; 17(2):179-86. PubMed ID: 18813332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3.
    Gu S; Yuan B; Campbell IM; Beck CR; Carvalho CM; Nagamani SC; Erez A; Patel A; Bacino CA; Shaw CA; Stankiewicz P; Cheung SW; Bi W; Lupski JR
    Hum Mol Genet; 2015 Jul; 24(14):4061-77. PubMed ID: 25908615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interstitial duplication 15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature.
    Urraca N; Cleary J; Brewer V; Pivnick EK; McVicar K; Thibert RL; Schanen NC; Esmer C; Lamport D; Reiter LT
    Autism Res; 2013 Aug; 6(4):268-79. PubMed ID: 23495136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: beyond breakage-fusion-bridge for telomere stabilization.
    Yatsenko SA; Hixson P; Roney EK; Scott DA; Schaaf CP; Ng YT; Palmer R; Fisher RB; Patel A; Cheung SW; Lupski JR
    Hum Genet; 2012 Dec; 131(12):1895-910. PubMed ID: 22890305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders.
    Miller DT; Shen Y; Weiss LA; Korn J; Anselm I; Bridgemohan C; Cox GF; Dickinson H; Gentile J; Harris DJ; Hegde V; Hundley R; Khwaja O; Kothare S; Luedke C; Nasir R; Poduri A; Prasad K; Raffalli P; Reinhard A; Smith SE; Sobeih MM; Soul JS; Stoler J; Takeoka M; Tan WH; Thakuria J; Wolff R; Yusupov R; Gusella JF; Daly MJ; Wu BL
    J Med Genet; 2009 Apr; 46(4):242-8. PubMed ID: 18805830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant.
    Hannes FD; Sharp AJ; Mefford HC; de Ravel T; Ruivenkamp CA; Breuning MH; Fryns JP; Devriendt K; Van Buggenhout G; Vogels A; Stewart H; Hennekam RC; Cooper GM; Regan R; Knight SJ; Eichler EE; Vermeesch JR
    J Med Genet; 2009 Apr; 46(4):223-32. PubMed ID: 18550696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology-mediated end-capping as a primary step of sister chromatid fusion in the breakage-fusion-bridge cycles.
    Marotta M; Chen X; Watanabe T; Faber PW; Diede SJ; Tapscott S; Tubbs R; Kondratova A; Stephens R; Tanaka H
    Nucleic Acids Res; 2013 Nov; 41(21):9732-40. PubMed ID: 23975201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tandem and inverted duplications in haemophilia A: Breakpoint characterisation provides insight into possible rearrangement mechanisms.
    Li Y; Ding B; Mao Y; Zhang H; Wang X; Ding Q
    Haemophilia; 2023 Jul; 29(4):1121-1134. PubMed ID: 37192522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHRNA7 triplication associated with cognitive impairment and neuropsychiatric phenotypes in a three-generation pedigree.
    Soler-Alfonso C; Carvalho CM; Ge J; Roney EK; Bader PI; Kolodziejska KE; Miller RM; Lupski JR; Stankiewicz P; Cheung SW; Bi W; Schaaf CP
    Eur J Hum Genet; 2014 Sep; 22(9):1071-6. PubMed ID: 24424125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monosomy 1p36 breakpoint junctions suggest pre-meiotic breakage-fusion-bridge cycles are involved in generating terminal deletions.
    Ballif BC; Yu W; Shaw CA; Kashork CD; Shaffer LG
    Hum Mol Genet; 2003 Sep; 12(17):2153-65. PubMed ID: 12915474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving genomic disorder-associated breakpoints within segmental DNA duplications using massively parallel sequencing.
    Nuttle X; Itsara A; Shendure J; Eichler EE
    Nat Protoc; 2014; 9(6):1496-513. PubMed ID: 24874815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.