These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24497957)

  • 1. Electrophoretic particle guidance significantly enhances olfactory drug delivery: a feasibility study.
    Xi J; Si XA; Gaide R
    PLoS One; 2014; 9(1):e86593. PubMed ID: 24497957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Testing of Electric-Guided Delivery of Charged Particles to the Olfactory Region: Experimental and Numerical Studies.
    Xi J; Yuan JE; Alshaiba M; Cheng D; Firlit Z; Johnson A; Nolan A; Su WC
    Curr Drug Deliv; 2016; 13(2):265-74. PubMed ID: 26362143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers.
    Xi J; Zhang Z; Si XA
    Int J Nanomedicine; 2015; 10():1211-22. PubMed ID: 25709443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olfactory Targeting of Microparticles Through Inhalation and Bi-directional Airflow: Effect of Particle Size and Nasal Anatomy.
    Yarragudi SB; Kumar H; Jain R; Tawhai M; Rizwan S
    J Aerosol Med Pulm Drug Deliv; 2020 Oct; 33(5):258-270. PubMed ID: 32423267
    [No Abstract]   [Full Text] [Related]  

  • 5. Modeling and Simulations of Olfactory Drug Delivery with Passive and Active Controls of Nasally Inhaled Pharmaceutical Aerosols.
    Si XA; Xi J
    J Vis Exp; 2016 May; (111):. PubMed ID: 27285852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intranasal Drug Delivery: A Non-Invasive Approach for the Better Delivery of Neurotherapeutics.
    Kumar H; Mishra G; Sharma AK; Gothwal A; Kesharwani P; Gupta U
    Pharm Nanotechnol; 2017; 5(3):203-214. PubMed ID: 28521670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of release position and ventilation effects on olfactory aerosol drug delivery.
    Si XA; Xi J; Kim J; Zhou Y; Zhong H
    Respir Physiol Neurobiol; 2013 Mar; 186(1):22-32. PubMed ID: 23313127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Comparison of Nasal Aerosol Administration Systems for Efficient Nose-to-Brain Drug Delivery.
    Dong J; Shang Y; Inthavong K; Chan HK; Tu J
    Pharm Res; 2017 Dec; 35(1):5. PubMed ID: 29288465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies to facilitate or block nose-to-brain drug delivery.
    Martins PP; Smyth HDC; Cui Z
    Int J Pharm; 2019 Oct; 570():118635. PubMed ID: 31445062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting.
    Pardeshi CV; Belgamwar VS
    Expert Opin Drug Deliv; 2013 Jul; 10(7):957-72. PubMed ID: 23586809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug delivery systems from nose to brain.
    Misra A; Kher G
    Curr Pharm Biotechnol; 2012 Sep; 13(12):2355-79. PubMed ID: 23016642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of magnetophoretic-guided drug delivery to the olfactory region in a human nose model.
    Xi J; Zhang Z; Si XA; Yang J; Deng W
    Biomech Model Mechanobiol; 2016 Aug; 15(4):877-91. PubMed ID: 26386567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent patents review on intranasal administration for CNS drug delivery.
    Jogani V; Jinturkar K; Vyas T; Misra A
    Recent Pat Drug Deliv Formul; 2008; 2(1):25-40. PubMed ID: 19075895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling.
    Xi J; Wang Z; Si XA; Zhou Y
    Eur J Pharm Sci; 2018 Jun; 118():113-123. PubMed ID: 29597042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intranasal Nose-to-Brain Drug Delivery via the Olfactory Region in Mice: Two In-Depth Protocols for Region-Specific Intranasal Application of Antibodies and for Expression Analysis of Fc Receptors via In Situ Hybridization in the Nasal Mucosa.
    Herzog H; Glöckler S; Flamm J; Ladel S; Maigler F; Pitzer C; Schindowski K
    Methods Mol Biol; 2024; 2754():387-410. PubMed ID: 38512678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective nose-to-brain drug delivery using a combination system targeting the olfactory region in monkeys.
    Sasaki K; Fukakusa S; Torikai Y; Suzuki C; Sonohata I; Kawahata T; Magata Y; Kawai K; Haruta S
    J Control Release; 2023 Jul; 359():384-399. PubMed ID: 37315691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid Film Translocation Significantly Enhances Nasal Spray Delivery to Olfactory Region: A Numerical Simulation Study.
    Si XA; Sami M; Xi J
    Pharmaceutics; 2021 Jun; 13(6):. PubMed ID: 34207109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals.
    Engelhardt L; Röhm M; Mavoungou C; Schindowski K; Schafmeister A; Simon U
    Pharm Res; 2016 Jun; 33(6):1337-50. PubMed ID: 26887679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new nanovesicular system for nasal drug administration.
    Touitou E; Duchi S; Natsheh H
    Int J Pharm; 2020 Apr; 580():119243. PubMed ID: 32209370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Possibility of therapy of brain functions by intranasal administration].
    Kashiwayanagi M; Iseki K
    Yakugaku Zasshi; 2012; 132(11):1245-6. PubMed ID: 23123714
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.