These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24498162)

  • 1. Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers.
    Da Y; Wang C; Wang S; Hu G
    PLoS One; 2014; 9(1):e87666. PubMed ID: 24498162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GVCBLUP: a computer package for genomic prediction and variance component estimation of additive and dominance effects.
    Wang C; Prakapenka D; Wang S; Pulugurta S; Runesha HB; Da Y
    BMC Bioinformatics; 2014 Aug; 15(1):270. PubMed ID: 25107495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic studies with preselected markers reveal dominance effects influencing growth traits in Eucalyptus nitens.
    Thumma BR; Joyce KR; Jacobs A
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34791210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Model with Correlation Between Additive and Dominance Effects.
    Xiang T; Christensen OF; Vitezica ZG; Legarra A
    Genetics; 2018 Jul; 209(3):711-723. PubMed ID: 29743175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers.
    Heidaritabar M; Wolc A; Arango J; Zeng J; Settar P; Fulton JE; O'Sullivan NP; Bastiaansen JW; Fernando RL; Garrick DJ; Dekkers JC
    J Anim Breed Genet; 2016 Oct; 133(5):334-46. PubMed ID: 27357473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments.
    Kumar S; Molloy C; Muñoz P; Daetwyler H; Chagné D; Volz R
    G3 (Bethesda); 2015 Oct; 5(12):2711-8. PubMed ID: 26497141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative genetics model as the unifying model for defining genomic relationship and inbreeding coefficient.
    Wang C; Da Y
    PLoS One; 2014; 9(12):e114484. PubMed ID: 25517971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Studies Reveal Substantial Dominant Effects and Improved Genomic Predictions in an Open-Pollinated Breeding Population of
    Thavamanikumar S; Arnold RJ; Luo J; Thumma BR
    G3 (Bethesda); 2020 Oct; 10(10):3751-3763. PubMed ID: 32788286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic estimation of additive and dominance effects and impact of accounting for dominance on accuracy of genomic evaluation in sheep populations.
    Moghaddar N; van der Werf JHJ
    J Anim Breed Genet; 2017 Dec; 134(6):453-462. PubMed ID: 28833716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers.
    Da Y
    BMC Genet; 2015 Dec; 16():144. PubMed ID: 26678438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits.
    Nazarian A; Gezan SA
    J Hered; 2016 Mar; 107(2):153-62. PubMed ID: 26712858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle.
    Ertl J; Legarra A; Vitezica ZG; Varona L; Edel C; Emmerling R; Götz KU
    Genet Sel Evol; 2014 Jun; 46(1):40. PubMed ID: 24962065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships.
    Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J
    Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels.
    Erbe M; Hayes BJ; Matukumalli LK; Goswami S; Bowman PJ; Reich CM; Mason BA; Goddard ME
    J Dairy Sci; 2012 Jul; 95(7):4114-29. PubMed ID: 22720968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using markers with large effect in genetic and genomic predictions.
    Lopes MS; Bovenhuis H; van Son M; Nordbø Ø; Grindflek EH; Knol EF; Bastiaansen JW
    J Anim Sci; 2017 Jan; 95(1):59-71. PubMed ID: 28177367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods.
    Alves AAC; da Costa RM; Bresolin T; Fernandes Júnior GA; Espigolan R; Ribeiro AMF; Carvalheiro R; de Albuquerque LG
    J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32474602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic prediction of growth in pigs based on a model including additive and dominance effects.
    Lopes MS; Bastiaansen JW; Janss L; Knol EF; Bovenhuis H
    J Anim Breed Genet; 2016 Jun; 133(3):180-6. PubMed ID: 26676611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix.
    Zhang Z; Liu J; Ding X; Bijma P; de Koning DJ; Zhang Q
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20844593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of predicting genomic breeding values for residual feed intake in Angus and Charolais beef cattle.
    Chen L; Schenkel F; Vinsky M; Crews DH; Li C
    J Anim Sci; 2013 Oct; 91(10):4669-78. PubMed ID: 24078618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.