These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2449894)

  • 1. Kinetics of channelized membrane ions in magnetic fields.
    Liboff AR; McLeod BR
    Bioelectromagnetics; 1988; 9(1):39-51. PubMed ID: 2449894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation.
    McLeod BR; Liboff AR
    Bioelectromagnetics; 1986; 7(2):177-89. PubMed ID: 3741492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cyclotron resonance as a cause of biological effects of weak electric and magnetic fields?].
    Leitgeb N
    Biomed Tech (Berl); 1990 Jun; 35(6):135-8. PubMed ID: 2164850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Search for cyclotron resonance in cells in vitro.
    Parkinson WC; Hanks CT
    Bioelectromagnetics; 1989; 10(2):129-45. PubMed ID: 2712845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental search for combined AC and DC magnetic field effects on ion channels.
    Galt S; Sandblom J; Hamnerius Y; Höjevik P; Saalman E; Nordén B
    Bioelectromagnetics; 1993; 14(4):315-27. PubMed ID: 7692856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic cyclotron resonance in biomolecules.
    Zhadin MN; Fesenko EE
    Biomed Sci; 1990 Mar; 1(3):245-50. PubMed ID: 2103827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic gating in ion channels.
    McLeod BR; Liboff AR; Smith SD
    J Theor Biol; 1992 Sep; 158(1):15-31. PubMed ID: 1282185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ ion transport through patch-clamped cells exposed to magnetic fields.
    Höjevik P; Sandblom J; Galt S; Hamnerius Y
    Bioelectromagnetics; 1995; 16(1):33-40. PubMed ID: 7748201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microvillar ion channels: cytoskeletal modulation of ion fluxes.
    Lange K
    J Theor Biol; 2000 Oct; 206(4):561-84. PubMed ID: 11013115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applied field nonequilibrium molecular dynamics simulations of ion exit from a beta-barrel model of the L-type calcium channel.
    Ramakrishnan V; Henderson D; Busath DD
    Biochim Biophys Acta; 2004 Jul; 1664(1):1-8. PubMed ID: 15238253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana.
    Pazur A; Rassadina V
    BMC Plant Biol; 2009 Apr; 9():47. PubMed ID: 19405943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the cyclotron resonance model of ion transport.
    Sandweiss J
    Bioelectromagnetics; 1990; 11(2):203-5. PubMed ID: 1700714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of electrical fields inside a biological structure.
    Drago GP; Ridella S
    Br J Cancer Suppl; 1982 Mar; 5():215-9. PubMed ID: 6279135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic theory model for ion movement through biological membranes. I. Field-dependent conductances in the presence of solution symmetry.
    Mackey MC
    Biophys J; 1971 Jan; 11(1):75-90. PubMed ID: 5539001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses.
    Kindzelskii AL; Petty HR
    Eur Biophys J; 2005 Dec; 35(1):1-26. PubMed ID: 16044273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro: a three-model analysis consistent with the frequency response up to 510 Hz.
    Blackman CF; Benane SG; Elliott DJ; House DE; Pollock MM
    Bioelectromagnetics; 1988; 9(3):215-27. PubMed ID: 3178897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ambient levels of power-line-frequency electric fields on a developing vertebrate.
    Blackman CF; House DE; Benane SG; Joines WT; Spiegel RJ
    Bioelectromagnetics; 1988; 9(2):129-40. PubMed ID: 3377861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium efflux of plasma membrane vesicles exposed to ELF magnetic fields--test of a nuclear magnetic resonance interaction model.
    Sun WJ; Mogadam MK; Sommarin M; Nittby H; Salford LG; Persson BR; Eberhardt JL
    Bioelectromagnetics; 2012 Oct; 33(7):535-42. PubMed ID: 22487968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium cyclotron resonance and diatom mobility.
    Smith SD; McLeod BR; Liboff AR; Cooksey K
    Bioelectromagnetics; 1987; 8(3):215-27. PubMed ID: 3663247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycoproteins bound to ion channels mediate detection of electric fields: a proposed mechanism and supporting evidence.
    Kolomytkin OV; Dunn S; Hart FX; Frilot C; Kolomytkin D; Marino AA
    Bioelectromagnetics; 2007 Jul; 28(5):379-85. PubMed ID: 17315160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.