BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 24499289)

  • 41. Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy.
    Yokoe S; Asahi M; Takeda T; Otsu K; Taniguchi N; Miyoshi E; Suzuki K
    Glycobiology; 2010 Oct; 20(10):1217-26. PubMed ID: 20484118
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of SN-6, a novel sodium-calcium exchange inhibitor, on contractility and calcium handling in isolated failing rat ventricular myocytes.
    Gandhi A; Siedlecka U; Shah AP; Navaratnarajah M; Yacoub MH; Terracciano CM
    Cardiovasc Ther; 2013 Dec; 31(6):e115-24. PubMed ID: 24106913
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Astragaloside IV improved intracellular calcium handling in hypoxia-reoxygenated cardiomyocytes via the sarcoplasmic reticulum Ca-ATPase.
    Xu XL; Chen XJ; Ji H; Li P; Bian YY; Yang D; Xu JD; Bian ZP; Zhang JN
    Pharmacology; 2008; 81(4):325-32. PubMed ID: 18349554
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells.
    Kim HJ; Jung J; Park JH; Kim JH; Ko KN; Kim CW
    Exp Biol Med (Maywood); 2013 Aug; 238(8):923-31. PubMed ID: 23970408
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction.
    Hassoun SM; Marechal X; Montaigne D; Bouazza Y; Decoster B; Lancel S; Neviere R
    Crit Care Med; 2008 Sep; 36(9):2590-6. PubMed ID: 18679108
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of Sarcoplasmic Reticulum Calcium Reserve and Intracellular Diastolic Calcium Removal in Isolated Ventricular Cardiomyocytes.
    Gao J; Shi X; He H; Zhang J; Lin D; Fu G; Lai D
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994760
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immersion before dry simulated dive reduces cardiomyocyte function and increases mortality after decompression.
    Gaustad SE; Brubakk AO; Høydal M; Catalucci D; Condorelli G; Dujic Z; Marinovic J; Ljubkovic M; Møllerløkken A; Wisløff U
    J Appl Physiol (1985); 2010 Sep; 109(3):752-7. PubMed ID: 20634356
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Effects of methyl protodioscin on [Ca2+]i and ATPase activity in cardiomyocytes and analysis of mechanisms].
    Ning Z; Li Y; Zhang R
    Zhongguo Zhong Yao Za Zhi; 2010 Jan; 35(1):80-3. PubMed ID: 20349722
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purified endogenous inhibitor of the Na/Ca exchanger can enhance the cardiomyocytes contractility and calcium transients.
    Liron B; Reuben H; Beni S; Chagit S; Khananshvili D
    Biochem Biophys Res Commun; 2006 Aug; 346(3):1100-7. PubMed ID: 16782052
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diabetes alters intracellular calcium transients in cardiac endothelial cells.
    Sheikh AQ; Hurley JR; Huang W; Taghian T; Kogan A; Cho H; Wang Y; Narmoneva DA
    PLoS One; 2012; 7(5):e36840. PubMed ID: 22590623
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exogenous nitric oxide triggers classic ischemic preconditioning by preventing intracellular Ca2+ overload in cardiomyocytes.
    Rickover O; Zinman T; Kaplan D; Shainberg A
    Cell Calcium; 2008 Apr; 43(4):324-33. PubMed ID: 17692373
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Effects of tumor necrosis factor alpha on expression of phospholamban and intracellular calcium in cardiomyocytes].
    Yao YM; Hu SJ; Huang YW; Yang CH; Sun J; Zhu ZH; Wu T
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2005 Dec; 27(6):767-71. PubMed ID: 16447655
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Radio Frequency Electromagnetic Field Effect on the State of Na+/Ca2+ Exchange in the Isolated Rat Heart].
    Alabovsky VV; Kudryshov YB; Vinokurov AA; Bogacheva EV; Maslov OV; Perov SY
    Radiats Biol Radioecol; 2016; 56(2):171-6. PubMed ID: 27534068
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Agmatine modulates calcium handling in cardiomyocytes of hibernating ground squirrels through calcium-sensing receptor signaling.
    Maltsev AV
    Cell Signal; 2018 Nov; 51():1-12. PubMed ID: 30030121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of extremely low-frequency electromagnetic field exposure on the skeletal muscle functions in rats.
    Gunes S; Buyukakilli B; Yaman S; Turkseven CH; Ballı E; Cimen B; Bayrak G; Celikcan HD
    Toxicol Ind Health; 2020 Feb; 36(2):119-131. PubMed ID: 32279651
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synchronous progression of calcium transient-dependent beating and sarcomere destruction in apoptotic adult cardiomyocytes.
    Maruyama R; Takemura G; Tohse N; Ohkusa T; Ikeda Y; Tsuchiya K; Minatoguchi S; Matsuzaki M; Fujiwara T; Fujiwara H
    Am J Physiol Heart Circ Physiol; 2006 Apr; 290(4):H1493-502. PubMed ID: 16284238
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Correlation of magnetic AC field on cardiac myocyte Ca(2+) transients at different magnetic DC levels.
    Fixler D; Yitzhaki S; Axelrod A; Zinman T; Shainberg A
    Bioelectromagnetics; 2012 Dec; 33(8):634-40. PubMed ID: 22532275
    [TBL] [Abstract][Full Text] [Related]  

  • 58. No effects of intermittent 50 Hz EMF on cytoplasmic free calcium and on the mitochondrial membrane potential in human diploid fibroblasts.
    Pilger A; Ivancsits S; Diem E; Steffens M; Kolb HA; Rüdiger HW
    Radiat Environ Biophys; 2004 Sep; 43(3):203-7. PubMed ID: 15340854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of 100-μT extremely low frequency electromagnetic fields exposure on hematograms and blood chemistry in rats.
    Lai J; Zhang Y; Zhang J; Liu X; Ruan G; Chaugai S; Tang J; Wang H; Chen C; Wang DW
    J Radiat Res; 2016 Jan; 57(1):16-24. PubMed ID: 26404558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1.
    Ma Q; Chen C; Deng P; Zhu G; Lin M; Zhang L; Xu S; He M; Lu Y; Duan W; Pi H; Cao Z; Pei L; Li M; Liu C; Zhang Y; Zhong M; Zhou Z; Yu Z
    PLoS One; 2016; 11(3):e0150923. PubMed ID: 26950212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.