BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24499362)

  • 1. Investigation of the gibberellic acid optimization with a statistical tool from Penicillium variable in batch reactor.
    Isa NK; Mat Don M
    Prep Biochem Biotechnol; 2014; 44(6):572-85. PubMed ID: 24499362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the medium composition of a biphasic production system for mycelial growth and spore production of Aschersonia placenta using response surface methodology.
    Qiu J; Song F; Qiu Y; Li X; Guan X
    J Invertebr Pathol; 2013 Feb; 112(2):108-15. PubMed ID: 23174147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of culture conditions for penicilazaphilone C production by a marine-derived fungus Penicillium sclerotiorum M-22.
    Zhao HG; Wang M; Lin YY; Zhou SL
    Lett Appl Microbiol; 2018 Mar; 66(3):222-230. PubMed ID: 29285768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gibberellic acid production by free and immobilized cells in different culture systems.
    Durán-Páramo E; Molina-Jiménez H; Brito-Arias MA; Robles-Martínez F
    Appl Biochem Biotechnol; 2004; 113-116():381-8. PubMed ID: 15054265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical optimization of alkaline protease production from Penicillium citrinum YL-1 under solid-state fermentation.
    Xiao YZ; Wu DK; Zhao SY; Lin WM; Gao XY
    Prep Biochem Biotechnol; 2015; 45(5):447-62. PubMed ID: 24840211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of culture conditions for flexirubin production by Chryseobacterium artocarpi CECT 8497 using response surface methodology.
    Venil CK; Zakaria ZA; Ahmad WA
    Acta Biochim Pol; 2015; 62(2):185-90. PubMed ID: 25979288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compactin production studies using Penicillium brevicompactum under solid-state fermentation conditions.
    Shaligram NS; Singh SK; Singhal RS; Pandey A; Szakacs G
    Appl Biochem Biotechnol; 2009 Nov; 159(2):505-20. PubMed ID: 19099208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gibberellic Acid Production by Different Fermentation Systems Using Citric Pulp as Substrate/Support.
    de Oliveira J; Rodrigues C; Vandenberghe LPS; Câmara MC; Libardi N; Soccol CR
    Biomed Res Int; 2017; 2017():5191046. PubMed ID: 29082248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical optimization of tannase production from Penicillium variable using fruits (chebulic myrobalan) of Terminalia chebula.
    Saxena S; Saxena RK
    Biotechnol Appl Biochem; 2004 Feb; 39(Pt 1):99-106. PubMed ID: 12927025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tannase production by Penicillium purpurogenum PAF6 in solid state fermentation of tannin-rich plant residues following OVAT and RSM.
    Jana A; Maity C; Halder SK; Mondal KC; Pati BR; Mohapatra PK
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1254-69. PubMed ID: 22270550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization Strategies for Purification of Mycophenolic Acid Produced by Penicillium brevicompactum.
    Anand S; Srivastava P
    Appl Biochem Biotechnol; 2020 Jun; 191(2):867-880. PubMed ID: 31907779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing production of Penicillium cyclopium partial acylglycerol lipase.
    Vanot G; Valérie D; Guilhem MC; Phan Tan Luu R; Comeau LC
    Appl Microbiol Biotechnol; 2002 Dec; 60(4):417-9. PubMed ID: 12466881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of medium composition for butyric acid production by Clostridium thermobutyricum using response surface methodology.
    Zhang CH; Ma YJ; Yang FX; Liu W; Zhang YD
    Bioresour Technol; 2009 Sep; 100(18):4284-8. PubMed ID: 19403305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the fermentation medium for alpha-galactosidase production from Aspergillus foetidus ZU-G1 using response surface methodology.
    Liu C; Ruan H; Shen H; Chen Q; Zhou B; Li Y; He G
    J Food Sci; 2007 May; 72(4):M120-5. PubMed ID: 17995779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical optimization of bioprocess parameters for enhanced gallic acid production from coffee pulp tannins by Penicillium verrucosum.
    Bhoite RN; Navya PN; Murthy PS
    Prep Biochem Biotechnol; 2013; 43(4):350-63. PubMed ID: 23464918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gibberellic acid production by Fusarium moniliforme on lupin seed extract.
    Gulewicz K; Rataj-Guranowska M; Lukaszewska N; Michalski Z
    Acta Microbiol Pol; 1994; 43(1):73-7. PubMed ID: 7526618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN.
    Rafigh SM; Yazdi AV; Vossoughi M; Safekordi AA; Ardjmand M
    Int J Biol Macromol; 2014 Sep; 70():463-73. PubMed ID: 25062991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gibberellic acid production by solid-state fermentation in coffee husk.
    Machado CM; Soccol CR; de Oliveira BH; Pandey A
    Appl Biochem Biotechnol; 2002; 102-103(1-6):179-91. PubMed ID: 12396121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods.
    Jo JH; Lee DS; Park D; Choe WS; Park JM
    Bioresour Technol; 2008 Apr; 99(6):2061-6. PubMed ID: 17582761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A possible mechanism of metabolic regulation in Gibberella fujikuroi using a mixed carbon source of glucose and corn oil inferred from analysis of the kinetics data obtained in a stirrer tank bioreactor.
    Rios-Iribe EY; Hernández-Calderón OM; Reyes-Moreno C; Contreras-Andrade I; Flores-Cotera LB; Escamilla-Silva EM
    Biotechnol Prog; 2013; 29(5):1169-80. PubMed ID: 23825106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.