These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24499836)

  • 1. Phytochrome action in Oryza sativa L. : V. Effects of decapitation and red and far-red light on cell wall extensibility.
    Masuda Y; Pjon CJ; Furuya M
    Planta; 1970 Sep; 90(3):236-42. PubMed ID: 24499836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytochrome Action in Oryza sativa L: IV. Red and Far Red Reversible Effect on the Production of Ethylene in Excised Coleoptiles.
    Imaseki H; Pjon CJ; Furuya M
    Plant Physiol; 1971 Sep; 48(3):241-4. PubMed ID: 16657772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochrome action in Oryza sativa L. : II. The spectrophotometric versus the physiological status of phytochrome in coleoptiles.
    Pjon CJ; Furuya M
    Planta; 1968 Dec; 81(4):303-13. PubMed ID: 24519726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular basis for the automorphic curvature of rice coleoptiles on a three-dimensional clinostat: possible involvement of reorientation of cortical microtubules.
    Saiki M; Fujita H; Soga K; Wakabayashi K; Kamisaka S; Yamashita M; Hoson T
    J Plant Res; 2005 Jun; 118(3):199-205. PubMed ID: 15937724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of auxin and abscisic acid on cell wall extensibility in maize coleoptiles.
    Kutschera U; Schopfer P
    Planta; 1986 Apr; 167(4):527-35. PubMed ID: 24240369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytochrome control of maize coleoptile section elongation: the role of cell wall extensibility.
    Warner TJ; Ross JD
    Plant Physiol; 1981 Nov; 68(5):1024-6. PubMed ID: 16662044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes.
    Holalu SV; Finlayson SA
    J Exp Bot; 2017 Feb; 68(5):943-952. PubMed ID: 28062593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides.
    Nakamura Y; Wakabayashi K; Hoson T
    Physiol Plant; 2003 Aug; 118(4):597-604. PubMed ID: 14631937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell wall changes involved in the automorphic curvature of rice coleoptiles under microgravity conditions in space.
    Hoson T; Soga K; Mori R; Saiki M; Nakamura Y; Wakabayashi K; Kamisaka S
    J Plant Res; 2004 Dec; 117(6):449-55. PubMed ID: 15538652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action of red light on indole-3-acetic-acid status and growth in coleoptiles of etiolated maize seedlings.
    Iino M
    Planta; 1982 Nov; 156(1):21-32. PubMed ID: 24272212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of red, far red, and blue light on enhancement of nitrate reductase activity and on nitrate uptake in etiolated rice seedlings.
    Sasakawa H; Yamamoto Y
    Plant Physiol; 1979 Jun; 63(6):1098-101. PubMed ID: 16660864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circumnutation of rice coleoptiles: its occurrence, regulation by phytochrome, and relationship with gravitropism.
    Yoshihara T; Iino M
    Plant Cell Environ; 2005 Feb; 28(2):134-46. PubMed ID: 16010729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Modification of Cell Wall Properties Is Involved in the Growth Inhibition of Rice Coleoptiles Induced by Lead Stress.
    Wakabayashi K; Soga K; Hoson T; Masuda H
    Life (Basel); 2023 Feb; 13(2):. PubMed ID: 36836828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A red-far red reversible effect on uptake of exogenous indoleacetic Acid in etiolated rice coleoptiles.
    Sherwin JE; Furuya M
    Plant Physiol; 1973 Feb; 51(2):295-8. PubMed ID: 16658318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in Photoresponse and Phytochrome Spectrophotometry Between Etiolated and De-etiolated Pea Stem Tissue.
    Fox LR; Hillman WS
    Plant Physiol; 1968 Nov; 43(11):1799-804. PubMed ID: 16656974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Kinetic Analysis of Phytochrome Controlled Mesocotyl Growth in Zea mays Seedlings.
    Yahalom A; Epel BL; Glinka Z; Macdonald IR; Gordon DC
    Plant Physiol; 1987 Jun; 84(2):390-4. PubMed ID: 16665449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice.
    Zheng J; Wang Y; He Y; Zhou J; Li Y; Liu Q; Xie X
    Plant Sci; 2014 Jan; 214():99-105. PubMed ID: 24268167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoresponses of transgenic tobacco plants expressing an oat phytochrome gene.
    McCormac AC; Cherry JR; Hershey HP; Vierstra RD; Smith H
    Planta; 1991 Sep; 185(2):162-70. PubMed ID: 24186338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two native pools of phytochrome A in monocots: Evidence from fluorescence investigations of phytochrome mutants of rice.
    Sineshchekov V; Loskovich A; Inagaki N; Takano M
    Photochem Photobiol; 2006; 82(4):1116-22. PubMed ID: 17205634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical extensibility of maize coleoptile cell walls: apparent plastic extensibility is due to elastic hysteresis.
    Hohl M; Schopfer P
    Planta; 1992 Jul; 187(4):498-504. PubMed ID: 24178144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.