These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24499836)

  • 21. Physical extensibility of maize coleoptile cell walls: apparent plastic extensibility is due to elastic hysteresis.
    Hohl M; Schopfer P
    Planta; 1992 Jul; 187(4):498-504. PubMed ID: 24178144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-grown plants of transgenic tobacco expressing an introduced oat phytochrome A gene under the control of a constitutive viral promoter exhibit persistent growth inhibition by far-red light.
    McCormac A; Whitelam G; Smith H
    Planta; 1992 Sep; 188(2):173-81. PubMed ID: 24178253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings.
    Hossain MT; Mori R; Soga K; Wakabayashi K; Kamisaka S; Fujii S; Yamamoto R; Hoson T
    J Plant Res; 2002 Feb; 115(1117):23-7. PubMed ID: 12884045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses.
    Effendi Y; Jones AM; Scherer GF
    J Exp Bot; 2013 Nov; 64(16):5065-74. PubMed ID: 24052532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Floral initiation in Lolium temulentum L.: the role of phytochrome in the responses to red and far-red light.
    Holland RW; Vince D
    Planta; 1971 Sep; 98(3):232-43. PubMed ID: 24493394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Red light and auxin effects on rubidium uptake by oat coleoptile and pea epicotyl segments.
    Pike CS; Richardson AE
    Plant Physiol; 1979 Jan; 63(1):139-41. PubMed ID: 16660665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings.
    Kim SH; Shinkle JR; Roux SJ
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9866-70. PubMed ID: 11537413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of OsPIL15, a phytochrome-interacting factor-like protein gene, represses etiolated seedling growth in rice.
    Zhou J; Liu Q; Zhang F; Wang Y; Zhang S; Cheng H; Yan L; Li L; Chen F; Xie X
    J Integr Plant Biol; 2014 Apr; 56(4):373-87. PubMed ID: 24279300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space.
    Hoson T; Soga K; Mori R; Saiki M; Nakamura Y; Wakabayashi K; Kamisaka S
    Plant Cell Physiol; 2002 Sep; 43(9):1067-71. PubMed ID: 12354926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separation of Photolabile-Phytochrome and Photostable-Phytochrome Actions on Growth and Microtubule Orientation in Maize Coleoptiles (A Physiological Approach).
    Fischer K; Schopfer P
    Plant Physiol; 1997 Oct; 115(2):511-518. PubMed ID: 12223819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling of phytochrome B to the control of hypocotyl growth in Arabidopsis.
    Casal JJ
    Planta; 1995; 196(1):23-9. PubMed ID: 7767236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cooperation of epidermis and inner tissues in auxin-mediated growth of maize coleoptiles.
    Kutschera U; Bergfeld R; Schopfer P
    Planta; 1987 Feb; 170(2):168-80. PubMed ID: 24232875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis thaliana L. to Low Red/Far-Red Ratio.
    Halliday KJ; Koornneef M; Whitelam GC
    Plant Physiol; 1994 Apr; 104(4):1311-1315. PubMed ID: 12232170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings.
    Zhang C; Zhang F; Zhou J; Fan Z; Chen F; Ma H; Xie X
    Plant Cell Rep; 2012 Jul; 31(7):1333-43. PubMed ID: 22572927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracellular redistribution of phytochrome in etiolated soybean (Glycine max L.) seedlings.
    Cope M; Pratt LH
    Planta; 1992 Aug; 188(1):115-22. PubMed ID: 24178207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytochrome is required for the occurrence of time-dependent phototropism in maize coleoptiles.
    Liu YJ; Iino M
    Plant Cell Environ; 1996 Dec; 19(12):1379-88. PubMed ID: 11539322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of red light on the phototropic sensitivity of corn coleoptiles.
    Chon HP; Briggs WR
    Plant Physiol; 1966 Dec; 41(10):1715-24. PubMed ID: 16656463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytochrome-mediated polarotropism of Adiantum capillus-veneris L. protonemata as analyzed by microbeam irradiation with polarized light.
    Kadota A; Wada M; Furuya M
    Planta; 1985 Jul; 165(1):30-6. PubMed ID: 24240954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhizome transition to storage organ is under phytochrome control in lotus (Nelumbo nucifera).
    Masuda J; Ozaki Y; Okubo H
    Planta; 2007 Sep; 226(4):909-15. PubMed ID: 17520280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An amino-terminal deletion of rice phytochrome A results in a dominant negative suppression of tobacco phytochrome A activity in transgenic tobacco seedlings.
    Emmler K; Stockhaus J; Chua NH; Schäfer E
    Planta; 1995; 197(1):103-10. PubMed ID: 7580859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.