These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24499976)

  • 21. GH3 expression and IAA-amide synthetase activity in pea (Pisum sativum L.) seedlings are regulated by light, plant hormones and auxinic herbicides.
    Ostrowski M; Jakubowska A
    J Plant Physiol; 2013 Mar; 170(4):361-8. PubMed ID: 23332498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Auxin-cytokinin interactions in the regulation of correlative inhibition in two-branched pea seedlings.
    Kotov AA; Kotova LM
    J Exp Bot; 2018 May; 69(12):2967-2978. PubMed ID: 29590457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Indole-3-acetic acid levels after phytochrome-mediated changes in the stem elongation rate of dark- and light-grown Pisum seedlings.
    Behringer FJ; Davies PJ
    Planta; 1992 Aug; 188(1):85-92. PubMed ID: 24178203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On ethylene and stem elongation in green pea seedlings.
    Koch BL; Moore TC
    Plant Physiol; 1990 Aug; 93(4):1663-4. PubMed ID: 16667672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem.
    Morris DA; Johnson CF
    Planta; 1990 Apr; 181(1):117-24. PubMed ID: 24196683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gibberellic Acid-Promoted Lignification and Phenylalanine Ammonia-lyase Activity in a Dwarf Pea (Pisum sativum).
    Cheng CK; Marsh HV
    Plant Physiol; 1968 Nov; 43(11):1755-9. PubMed ID: 16656968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hormone levels and response during de-etiolation in pea.
    Symons GM; Reid JB
    Planta; 2003 Jan; 216(3):422-31. PubMed ID: 12520333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The promotion of indole-3-acetic acid oxidation in pea buds by gibberellic acid and treatment.
    Ockerse R; Waber J
    Plant Physiol; 1970 Dec; 46(6):821-4. PubMed ID: 5500209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that the mature leaves contribute auxin to the immature tissues of pea (Pisum sativum L.).
    Jager CE; Symons GM; Glancy NE; Reid JB; Ross JJ
    Planta; 2007 Jul; 226(2):361-8. PubMed ID: 17308928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Changes in the contents of abscisic acid, indoleacetic acid, and chloroplast pigments in pea seedlings treated with gibberellic acid].
    Tietz A; Dörffling K
    Planta; 1969 Jun; 85(2):118-25. PubMed ID: 24515584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance.
    Li C; Bangerth F
    J Plant Physiol; 2003 Sep; 160(9):1059-63. PubMed ID: 14593807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biosynthesis and conjugation of indole-3-acetic acid in germinating seed and seedlings ofDalbergia dolichopetala.
    Monteiro AM; Crozier A; Sandberg G
    Planta; 1988 Dec; 174(4):561-8. PubMed ID: 24221574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of exogenous 3-indoleacetic acid and cadmium stress on the physiological and biochemical characteristics of Cinnamomum camphora.
    Zhou J; Cheng K; Huang G; Chen G; Zhou S; Huang Y; Zhang J; Duan H; Fan H
    Ecotoxicol Environ Saf; 2020 Mar; 191():109998. PubMed ID: 31796252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport.
    Chhun T; Uno Y; Taketa S; Azuma T; Ichii M; Okamoto T; Tsurumi S
    J Exp Bot; 2007; 58(7):1695-704. PubMed ID: 17383991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of phenolic acids, metallic ions and chelating agents on auxin-induced growth.
    Tomaszewski M; Thimann KV
    Plant Physiol; 1966 Nov; 41(9):1443-54. PubMed ID: 16656422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hill-acitivity and P700 concentration of chloroplasts isolated from radish seedlings treated with-indoleacetic acid, kinetin of gibberellic acid.
    Buschmann C; Lichtenthaler HK
    Z Naturforsch C Biosci; 1977; 32(9-10):798-802. PubMed ID: 145120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Auxin Enhancement of mRNAs in Epidermis and Internal Tissues of the Pea Stem and Its Significance for Control of Elongation.
    Dietz A; Kutschera U; Ray PM
    Plant Physiol; 1990 Jun; 93(2):432-8. PubMed ID: 16667484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolism of indole-3-acetic acid in Arabidopsis.
    Ostin A; Kowalyczk M; Bhalerao RP; Sandberg G
    Plant Physiol; 1998 Sep; 118(1):285-96. PubMed ID: 9733548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of temperature and sink activity on the transport of (14)C-labelled indol-3yl-acetic acid in the intact pea plant (Pisum sativum L.).
    Eliezer J; Morris DA
    Planta; 1979 Dec; 147(3):216-24. PubMed ID: 24311035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blockage by gibberellic Acid of phytochrome effects on growth, auxin responses, and flavonoid synthesis in etiolated pea internodes.
    Russell DW; Galston AW
    Plant Physiol; 1969 Sep; 44(9):1211-6. PubMed ID: 16657193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.