BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24500117)

  • 1. Gold nanoparticle-based exonuclease III signal amplification for highly sensitive colorimetric detection of folate receptor.
    Yang X; Gao Z
    Nanoscale; 2014 Mar; 6(6):3055-8. PubMed ID: 24500117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A ratiometric colorimetric detection of the folate receptor based on terminal protection of small-molecule-linked DNA.
    Zhu Y; Wang G; Sha L; Qiu Y; Jiang H; Zhang X
    Analyst; 2015 Feb; 140(4):1260-4. PubMed ID: 25553613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive fluorescence biosensor for folate receptor based on terminal protection of small-molecule-linked DNA.
    Wei X; Lin W; Ma N; Luo F; Lin Z; Guo L; Qiu B; Chen G
    Chem Commun (Camb); 2012 Jun; 48(49):6184-6. PubMed ID: 22590712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terminal protection of small molecule-linked ssDNA for label-free and sensitive fluorescent detection of folate receptor.
    Xu Y; Jiang B; Xie J; Xiang Y; Yuan R; Chai Y
    Talanta; 2014 Oct; 128():237-41. PubMed ID: 25059154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms.
    Li J; Deng T; Chu X; Yang R; Jiang J; Shen G; Yu R
    Anal Chem; 2010 Apr; 82(7):2811-6. PubMed ID: 20192245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection.
    Ni J; Wang Q; Yang W; Zhao M; Zhang Y; Guo L; Qiu B; Lin Z; Yang HH
    Biosens Bioelectron; 2016 Dec; 86():496-501. PubMed ID: 27442079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free and dual-amplified detection of protein via small molecule-ligand linked DNA and a cooperative DNA machine.
    Li P; Wang L; Zhu J; Wu Y; Jiang W
    Biosens Bioelectron; 2015 Oct; 72():107-13. PubMed ID: 25966829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical detection of protein based on hybridization chain reaction-assisted formation of copper nanoparticles.
    Zhao J; Hu S; Cao Y; Zhang B; Li G
    Biosens Bioelectron; 2015 Apr; 66():327-31. PubMed ID: 25437371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric and visual mercury(II) assay based on target-induced cyclic enzymatic amplification, thymine-Hg(II)-thymine interaction, and aggregation of gold nanoparticles.
    Song X; Wang Y; Liu S; Zhang X; Wang H; Wang J; Huang J
    Mikrochim Acta; 2019 Jan; 186(2):105. PubMed ID: 30637516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free exonuclease I-assisted signal amplification colorimetric sensor for highly sensitive detection of kanamycin.
    Li J; Liu Y; Lin H; Chen Y; Liu Z; Zhuang X; Tian C; Fu X; Chen L
    Food Chem; 2021 Jun; 347():128988. PubMed ID: 33465686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoprobes-based resonance Rayleigh scattering assay platform: Sensitive cytosensing of breast cancer cells and facile monitoring of folate receptor expression.
    Cai HH; Pi J; Lin X; Li B; Li A; Yang PH; Cai J
    Biosens Bioelectron; 2015 Dec; 74():165-9. PubMed ID: 26141102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gold nanoparticle-based colorimetric mercury(II) biosensor using a DNA probe with phosphorothioate RNA modification and exonuclease III-assisted signal amplification.
    Xing Y; Zhu Q; Zhou X; Qi P
    Mikrochim Acta; 2020 Mar; 187(4):214. PubMed ID: 32162015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive colorimetric aptasensor for Hg
    Memon AG; Xing Y; Zhou X; Wang R; Liu L; Zeng S; He M; Ma M
    J Hazard Mater; 2020 Feb; 384():120948. PubMed ID: 31610345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A folate receptor electrochemical sensor based on terminal protection and supersandwich DNAzyme amplification.
    Wang G; He X; Wang L; Zhang X
    Biosens Bioelectron; 2013 Apr; 42():337-41. PubMed ID: 23208108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive detection of transcription factors by isothermal exponential amplification-based colorimetric assay.
    Zhang Y; Hu J; Zhang CY
    Anal Chem; 2012 Nov; 84(21):9544-9. PubMed ID: 23050558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid.
    Wen J; Chen J; Zhuang L; Zhou S
    Biosens Bioelectron; 2016 May; 79():656-60. PubMed ID: 26765529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the concentration of transcription factor by using exonuclease III-aided amplification and gold nanoparticle mediated fluorescence intensity: A new method for gene transcription related enzyme detection.
    Zhang K; Fan Z; Li H; Zhao J; Xie M
    Anal Chim Acta; 2020 Apr; 1104():132-139. PubMed ID: 32106944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric assay of K-562 cells based on folic acid-conjugated porous bimetallic Pd@Au nanoparticles for point-of-care testing.
    Ge S; Liu F; Liu W; Yan M; Song X; Yu J
    Chem Commun (Camb); 2014 Jan; 50(4):475-7. PubMed ID: 24257545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Synthesis of folate receptor-targeted nanoprobe for detection of cancer cells and its spectral analysis].
    Yao CP; Wang J; Yang Y; Dong YH; Xue Y; Mei JS; Zeng WH; Zhang ZX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1299-303. PubMed ID: 23905340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Background current reduction and biobarcode amplification for label-free, highly sensitive electrochemical detection of pathogenic DNA.
    Xu J; Jiang B; Su J; Xiang Y; Yuan R; Chai Y
    Chem Commun (Camb); 2012 Apr; 48(27):3309-11. PubMed ID: 22362204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.