These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 24500131)
1. The sieve tube wall and its relation to translocation. Spanner DC; Jones RL Planta; 1970 Mar; 92(1):64-72. PubMed ID: 24500131 [TBL] [Abstract][Full Text] [Related]
2. The cell wall-plasmalemma interface in sieve tubes of barley. Evert RF; Mierzwa RJ Planta; 1989 Jan; 177(1):24-34. PubMed ID: 24212269 [TBL] [Abstract][Full Text] [Related]
4. The fine structure of the sieve tubes of Salix caprea (L.) and its relation to the electroosmotic theory. Mishra U; Spanner DC Planta; 1969 Mar; 90(1):43-56. PubMed ID: 24500671 [TBL] [Abstract][Full Text] [Related]
5. Relation of beet yellows virus to the phloem and to movement in the sieve tube. Esau K; Cronshaw J; Hoefert LL J Cell Biol; 1967 Jan; 32(1):71-87. PubMed ID: 10976202 [TBL] [Abstract][Full Text] [Related]
6. Leaf structure in relation to solute transport and phloem loading in Zea mays L. Evert RF; Eschrich W; Heyser W Planta; 1978 Jan; 138(3):279-94. PubMed ID: 24414058 [TBL] [Abstract][Full Text] [Related]
7. Endoplasmic reticulum and crystalline fibrils in the root protophloem of Nymphoides peltata. Oparka KJ; Johnson RP Planta; 1978 Jan; 143(1):21-7. PubMed ID: 24408256 [TBL] [Abstract][Full Text] [Related]
8. Computational models evaluating the impact of sieve plates and radial water exchange on phloem pressure gradients. Stanfield RC; Schulte PJ; Randolph KE; Hacke UG Plant Cell Environ; 2019 Feb; 42(2):466-479. PubMed ID: 30074610 [TBL] [Abstract][Full Text] [Related]
9. THE FINE STRUCTURE AND DEVELOPMENT OF THE COMPANION CELL OF THE PHLOEM OF ACER PSEUDOPLATANUS. Wooding FB; Northcote DH J Cell Biol; 1965 Jan; 24(1):117-28. PubMed ID: 19866643 [TBL] [Abstract][Full Text] [Related]
10. Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport. Thompson MV; Holbrook NM J Theor Biol; 2003 Feb; 220(4):419-55. PubMed ID: 12623280 [TBL] [Abstract][Full Text] [Related]
11. Sieve-element differentiation and fluoresceine translocation in wound-phloem of pea roots after complete severance of the stele. Schulz A Planta; 1987 Mar; 170(3):289-99. PubMed ID: 24232957 [TBL] [Abstract][Full Text] [Related]
12. Immunocytochemical localisation of phloem lectin from Cucurbita maxima using peroxidase and colloidal-gold labels. Smith LM; Sabnis DD; Johnson RP Planta; 1987 Apr; 170(4):461-70. PubMed ID: 24233009 [TBL] [Abstract][Full Text] [Related]
13. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements. Buxa SV; Degola F; Polizzotto R; De Marco F; Loschi A; Kogel KH; di Toppi LS; van Bel AJ; Musetti R Front Plant Sci; 2015; 6():650. PubMed ID: 26347766 [TBL] [Abstract][Full Text] [Related]
14. Translocation of photoassimilates in wound-sieve tubes. Ruth Jacobsen K; Eschrich W Planta; 1990 Jun; 181(3):335-42. PubMed ID: 24196811 [TBL] [Abstract][Full Text] [Related]
15. Sieve-plate pores in leaf veins of Hordeum vulgare. Evert RF; Eschrich W; Eichhorn SE Planta; 1971 Sep; 100(3):262-7. PubMed ID: 24488199 [TBL] [Abstract][Full Text] [Related]
16. Ultrastructural indications for coexistence of symplastic and apoplastic phloem loading in Commelina benghalensis leaves : Differences in ontogenic development, spatial arrangement and symplastic connections of the two sieve tubes in the minor vein. van Bel AJ; van Kesteren WJ; Papenhuijzen C Planta; 1988 Nov; 176(2):159-72. PubMed ID: 24220769 [TBL] [Abstract][Full Text] [Related]
17. Scanning Electron Microscopy of the Phloem. Mullendore DL Methods Mol Biol; 2019; 2014():29-35. PubMed ID: 31197784 [TBL] [Abstract][Full Text] [Related]
18. Aspects of sieve element ultrastructure in Primula obconica. Tamulevich SR; Evert RF Planta; 1966 Dec; 69(4):319-37. PubMed ID: 24557883 [TBL] [Abstract][Full Text] [Related]
19. D-galactose transport in rat intestinal brush border membrane vesicles studied with a molecular-sieve technique. Bronk JR; Hastewell JG J Physiol; 1986 Jun; 375():71-9. PubMed ID: 3795071 [TBL] [Abstract][Full Text] [Related]
20. Aphid (Sitobion yakini) investigation suggests thin-walled sieve tubes in barley (Hordeum vulgare) to be more functional than thick-walled sieve tubes. Matsiliza B; Botha CE Physiol Plant; 2002 May; 115(1):137-143. PubMed ID: 12010477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]