BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 24500710)

  • 21. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrite reduction. Evaluation of its role in nitric oxide generation in anoxic tissues.
    Li H; Samouilov A; Liu X; Zweier JL
    J Biol Chem; 2001 Jul; 276(27):24482-9. PubMed ID: 11312267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase.
    Godber BL; Doel JJ; Sapkota GP; Blake DR; Stevens CR; Eisenthal R; Harrison R
    J Biol Chem; 2000 Mar; 275(11):7757-63. PubMed ID: 10713088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of Different Variants of Mo Enzyme crARC and the Interaction with Its Partners crCytb5-R and crCytb5-1.
    Chamizo-Ampudia A; Galvan A; Fernandez E; Llamas A
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28335548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of human mARC1 reveals its exceptional position among eukaryotic molybdenum enzymes.
    Kubitza C; Bittner F; Ginsel C; Havemeyer A; Clement B; Scheidig AJ
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):11958-11963. PubMed ID: 30397129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy metal ions inhibit molybdoenzyme activity by binding to the dithiolene moiety of molybdopterin in Escherichia coli.
    Neumann M; Leimkühler S
    FEBS J; 2008 Nov; 275(22):5678-89. PubMed ID: 18959753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell biology of molybdenum.
    Mendel RR
    Biofactors; 2009; 35(5):429-34. PubMed ID: 19623604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mitochondrial amidoxime-reducing component (mARC1) is a novel signal-anchored protein of the outer mitochondrial membrane.
    Klein JM; Busch JD; Potting C; Baker MJ; Langer T; Schwarz G
    J Biol Chem; 2012 Dec; 287(51):42795-803. PubMed ID: 23086957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of sulfamethoxazole hydroxylamine (SMX-HA) by the mitochondrial amidoxime reducing component (mARC).
    Ott G; Plitzko B; Krischkowski C; Reichmann D; Bittner F; Mendel RR; Kunze T; Clement B; Havemeyer A
    Chem Res Toxicol; 2014 Oct; 27(10):1687-95. PubMed ID: 25170804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the amidoxime reducing components ARC1 and ARC2 from Arabidopsis thaliana.
    Maiber L; Koprivova A; Bender D; Kopriva S; Fischer-Schrader K
    FEBS J; 2022 Sep; 289(18):5656-5669. PubMed ID: 35366369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo.
    Maia LB; Pereira V; Mira L; Moura JJ
    Biochemistry; 2015 Jan; 54(3):685-710. PubMed ID: 25537183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The pivotal role of the mitochondrial amidoxime reducing component 2 in protecting human cells against apoptotic effects of the base analog N6-hydroxylaminopurine.
    Plitzko B; Havemeyer A; Kunze T; Clement B
    J Biol Chem; 2015 Apr; 290(16):10126-35. PubMed ID: 25713076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxyl and hydroxyl radical transfer in mitochondrial amidoxime reducing component-catalyzed nitrite reduction.
    Yang J; Giles LJ; Ruppelt C; Mendel RR; Bittner F; Kirk ML
    J Am Chem Soc; 2015 Apr; 137(16):5276-9. PubMed ID: 25897643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli.
    Sandu C; Brandsch R
    Arch Microbiol; 2002 Dec; 178(6):465-70. PubMed ID: 12420167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrite-dependent vasodilation is facilitated by hypoxia and is independent of known NO-generating nitrite reductase activities.
    Dalsgaard T; Simonsen U; Fago A
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H3072-8. PubMed ID: 17307993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of nitrite bioactivation.
    Kim-Shapiro DB; Gladwin MT
    Nitric Oxide; 2014 Apr; 38():58-68. PubMed ID: 24315961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrite-dependent nitric oxide synthesis by molybdenum enzymes.
    Bender D; Schwarz G
    FEBS Lett; 2018 Jun; 592(12):2126-2139. PubMed ID: 29749013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molybdenum cofactor and human disease.
    Schwarz G
    Curr Opin Chem Biol; 2016 Apr; 31():179-87. PubMed ID: 27055119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An active site tyrosine influences the ability of the dimethyl sulfoxide reductase family of molybdopterin enzymes to reduce S-oxides.
    Johnson KE; Rajagopalan KV
    J Biol Chem; 2001 Apr; 276(16):13178-85. PubMed ID: 11278798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor.
    Leimkühler S; Klipp W
    FEMS Microbiol Lett; 1999 May; 174(2):239-46. PubMed ID: 10339814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.
    Carr GJ; Page MD; Ferguson SJ
    Eur J Biochem; 1989 Feb; 179(3):683-92. PubMed ID: 2920732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.