BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 24500710)

  • 41. Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism.
    Wang J; Keceli G; Cao R; Su J; Mi Z
    Redox Rep; 2017 Jan; 22(1):17-25. PubMed ID: 27686142
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective.
    Maia LB
    Molecules; 2023 Aug; 28(15):. PubMed ID: 37570788
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell biology of molybdenum in plants.
    Mendel RR
    Plant Cell Rep; 2011 Oct; 30(10):1787-97. PubMed ID: 21660547
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis and reactivity studies of model complexes for molybdopterin-dependent enzymes.
    Thapper A; Lorber C; Fryxelius J; Behrens A; Nordlander E
    J Inorg Biochem; 2000 Apr; 79(1-4):67-74. PubMed ID: 10830849
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in Escherichia coli.
    Reschke S; Sigfridsson KG; Kaufmann P; Leidel N; Horn S; Gast K; Schulzke C; Haumann M; Leimkühler S
    J Biol Chem; 2013 Oct; 288(41):29736-45. PubMed ID: 24003231
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The N-reductive system composed of mitochondrial amidoxime reducing component (mARC), cytochrome b5 (CYB5B) and cytochrome b5 reductase (CYB5R) is regulated by fasting and high fat diet in mice.
    Jakobs HH; Mikula M; Havemeyer A; Strzalkowska A; Borowa-Chmielak M; Dzwonek A; Gajewska M; Hennig EE; Ostrowski J; Clement B
    PLoS One; 2014; 9(8):e105371. PubMed ID: 25144769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molybdopterin guanine dinucleotide: a modified form of molybdopterin identified in the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides forma specialis denitrificans.
    Johnson JL; Bastian NR; Rajagopalan KV
    Proc Natl Acad Sci U S A; 1990 Apr; 87(8):3190-4. PubMed ID: 2326278
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detoxification of Trimethylamine N-Oxide by the Mitochondrial Amidoxime Reducing Component mARC.
    Schneider J; Girreser U; Havemeyer A; Bittner F; Clement B
    Chem Res Toxicol; 2018 Jun; 31(6):447-453. PubMed ID: 29856598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure and function of molybdopterin containing enzymes.
    Romão MJ; Knäblein J; Huber R; Moura JJ
    Prog Biophys Mol Biol; 1997; 68(2-3):121-44. PubMed ID: 9652170
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NO-synthase and nitrite-reductase components of nitric oxide cycle.
    Reutov VP; Sorokina EG
    Biochemistry (Mosc); 1998 Jul; 63(7):874-84. PubMed ID: 9721340
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Involvement of the Mitochondrial Amidoxime Reducing Component (mARC) in the Reductive Metabolism of Hydroxamic Acids.
    Ginsel C; Plitzko B; Froriep D; Stolfa DA; Jung M; Kubitza C; Scheidig AJ; Havemeyer A; Clement B
    Drug Metab Dispos; 2018 Oct; 46(10):1396-1402. PubMed ID: 30045842
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural studies of the molybdenum center of mitochondrial amidoxime reducing component (mARC) by pulsed EPR spectroscopy and 17O-labeling.
    Rajapakshe A; Astashkin AV; Klein EL; Reichmann D; Mendel RR; Bittner F; Enemark JH
    Biochemistry; 2011 Oct; 50(41):8813-22. PubMed ID: 21916412
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The mitochondrial Amidoxime Reducing Component (mARC) is involved in detoxification of N-hydroxylated base analogues.
    Krompholz N; Krischkowski C; Reichmann D; Garbe-Schönberg D; Mendel RR; Bittner F; Clement B; Havemeyer A
    Chem Res Toxicol; 2012 Nov; 25(11):2443-50. PubMed ID: 22924387
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemical nature and reaction mechanisms of the molybdenum cofactor of xanthine oxidoreductase.
    Okamoto K; Kusano T; Nishino T
    Curr Pharm Des; 2013; 19(14):2606-14. PubMed ID: 23116398
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase.
    Webb AJ; Milsom AB; Rathod KS; Chu WL; Qureshi S; Lovell MJ; Lecomte FM; Perrett D; Raimondo C; Khoshbin E; Ahmed Z; Uppal R; Benjamin N; Hobbs AJ; Ahluwalia A
    Circ Res; 2008 Oct; 103(9):957-64. PubMed ID: 18818408
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrate reduction: evaluation of its role in nitrite and nitric oxide generation in anoxic tissues.
    Li H; Samouilov A; Liu X; Zweier JL
    Biochemistry; 2003 Feb; 42(4):1150-9. PubMed ID: 12549937
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oxidation of molybdopterin in sulfite oxidase by ferricyanide. Effect on electron transfer activities.
    Gardlik S; Rajagopalan KV
    J Biol Chem; 1991 Mar; 266(8):4889-95. PubMed ID: 2002036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxygen and nitrite reduction by heme-deficient sulphite oxidase in a patient with mild sulphite oxidase deficiency.
    Bender D; Kaczmarek AT; Kuester S; Burlina AB; Schwarz G
    J Inherit Metab Dis; 2020 Jul; 43(4):748-757. PubMed ID: 31950508
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molybdenum cofactor: a compound in the in vitro activation of both nitrate reductase and trimethylamine-N-oxide reductase activities in Escherichia coli K12.
    Silvestro A; Pommier J; Giordano G
    Biochim Biophys Acta; 1986 Aug; 872(3):243-52. PubMed ID: 3524687
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molybdopterin from molybdenum and tungsten enzymes.
    Schindelin H; Kisker C; Rajagopalan KV
    Adv Protein Chem; 2001; 58():47-94. PubMed ID: 11665493
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.