BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24500774)

  • 1. The phylogenetic distribution and evolution of enzymes within the thymidine kinase 2-like gene family in metazoa.
    Konrad A; Lai J; Mutahir Z; Piškur J; Liberles DA
    J Mol Evol; 2014 Apr; 78(3-4):202-16. PubMed ID: 24500774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deoxyribonucleoside kinases belonging to the thymidine kinase 2 (TK2)-like group vary significantly in substrate specificity, kinetics and feed-back regulation.
    Knecht W; Petersen GE; Munch-Petersen B; Piskur J
    J Mol Biol; 2002 Jan; 315(4):529-40. PubMed ID: 11812127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Animal deoxyribonucleoside kinases: 'forward' and 'retrograde' evolution of their substrate specificity.
    Piskur J; Sandrini MP; Knecht W; Munch-Petersen B
    FEBS Lett; 2004 Feb; 560(1-3):3-6. PubMed ID: 14987989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana.
    Clausen AR; Girandon L; Ali A; Knecht W; Rozpedowska E; Sandrini MP; Andreasson E; Munch-Petersen B; Piškur J
    FEBS J; 2012 Oct; 279(20):3889-97. PubMed ID: 22897443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene duplications and losses among vertebrate deoxyribonucleoside kinases of the non-TK1 Family.
    Mutahir Z; Christiansen LS; Clausen AR; Berchtold MW; Gojkovic Z; Munch-Petersen B; Knecht W; Piškur J
    Nucleosides Nucleotides Nucleic Acids; 2016 Dec; 35(10-12):677-690. PubMed ID: 27906638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A few amino acid substitutions can convert deoxyribonucleoside kinase specificity from pyrimidines to purines.
    Knecht W; Sandrini MP; Johansson K; Eklund H; Munch-Petersen B; Piskur J
    EMBO J; 2002 Apr; 21(7):1873-80. PubMed ID: 11927571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxyribonucleoside kinases in two aquatic bacteria with high specificity for thymidine and deoxyadenosine.
    Tinta T; Christiansen LS; Konrad A; Liberles DA; Turk V; Munch-Petersen B; Piškur J; Clausen AR
    FEMS Microbiol Lett; 2012 Jun; 331(2):120-7. PubMed ID: 22462611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereoisomeric selectivity of human deoxyribonucleoside kinases.
    Wang J; Choudhury D; Chattopadhyaya J; Eriksson S
    Biochemistry; 1999 Dec; 38(51):16993-9. PubMed ID: 10606535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-homologous recombination of deoxyribonucleoside kinases from human and Drosophila melanogaster yields human-like enzymes with novel activities.
    Gerth ML; Lutz S
    J Mol Biol; 2007 Jul; 370(4):742-51. PubMed ID: 17543337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of residues involved in the specificity and regulation of the highly efficient multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster.
    Knecht W; Munch-Petersen B; Piskur J
    J Mol Biol; 2000 Aug; 301(4):827-37. PubMed ID: 10966789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active site mutants of Drosophila melanogaster multisubstrate deoxyribonucleoside kinase.
    Solaroli N; Bjerke M; Amiri MH; Johansson M; Karlsson A
    Eur J Biochem; 2003 Jul; 270(13):2879-84. PubMed ID: 12823558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis of non-conserved active site residues improves the activity and narrows the specificity of human thymidine kinase 2.
    Gerth ML; Lutz S
    Biochem Biophys Res Commun; 2007 Mar; 354(3):802-7. PubMed ID: 17266931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multisubstrate deoxyribonucleoside kinase from plants.
    Clausen AR; Girandon L; Knecht W; Survery S; Andreasson E; Munch-Petersen B; Piskur J
    Nucleic Acids Symp Ser (Oxf); 2008; (52):489-90. PubMed ID: 18776467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function analysis of a bacterial deoxyadenosine kinase reveals the basis for substrate specificity.
    Welin M; Wang L; Eriksson S; Eklund H
    J Mol Biol; 2007 Mar; 366(5):1615-23. PubMed ID: 17229440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The global distribution and evolution of deoxyribonucleoside kinases in bacteria.
    Konrad A; Yarunova E; Tinta T; Piškur J; Liberles DA
    Gene; 2012 Jan; 492(1):117-20. PubMed ID: 22057012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deoxyribonucleoside kinases: two enzyme families catalyze the same reaction.
    Sandrini MP; Piskur J
    Trends Biochem Sci; 2005 May; 30(5):225-8. PubMed ID: 15896737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional expression of a multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster and its C-terminal deletion mutants.
    Munch-Petersen B; Knecht W; Lenz C; Søndergaard L; Piskur J
    J Biol Chem; 2000 Mar; 275(9):6673-9. PubMed ID: 10692477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retroviral transduction of cancer cell lines with the gene encoding Drosophila melanogaster multisubstrate deoxyribonucleoside kinase.
    Zheng X; Johansson M; Karlsson A
    J Biol Chem; 2000 Dec; 275(50):39125-9. PubMed ID: 10993893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dictyostelium discoideum salvages purine deoxyribonucleosides by highly specific bacterial-like deoxyribonucleoside kinases.
    Sandrini MP; Söderbom F; Mikkelsen NE; Piskur J
    J Mol Biol; 2007 Jun; 369(3):653-64. PubMed ID: 17448496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of the multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster.
    Johansson M; van Rompay AR; Degrève B; Balzarini J; Karlsson A
    J Biol Chem; 1999 Aug; 274(34):23814-9. PubMed ID: 10446143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.