These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24500996)

  • 1. Efficient biocatalytic degradation of pollutants by enzyme-releasing self-propelled motors.
    Orozco J; Vilela D; Valdés-Ramírez G; Fedorak Y; Escarpa A; Vazquez-Duhalt R; Wang J
    Chemistry; 2014 Mar; 20(10):2866-71. PubMed ID: 24500996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marangoni self-propelled capsules in a maze: pollutants 'sense and act' in complex channel environments.
    Zhao G; Pumera M
    Lab Chip; 2014 Aug; 14(15):2818-23. PubMed ID: 24903774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-propelled activated carbon Janus micromotors for efficient water purification.
    Jurado-Sánchez B; Sattayasamitsathit S; Gao W; Santos L; Fedorak Y; Singh VV; Orozco J; Galarnyk M; Wang J
    Small; 2015 Jan; 11(4):499-506. PubMed ID: 25207503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Propelled Enzyme-Based Motors for Smart Mobile Electrochemical and Optical Biosensing.
    Moreno-Guzman M; Jodra A; López MÁ; Escarpa A
    Anal Chem; 2015 Dec; 87(24):12380-6. PubMed ID: 26595193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A monograph on the remediation of hazardous phthalates.
    Benjamin S; Pradeep S; Josh MS; Kumar S; Masai E
    J Hazard Mater; 2015 Nov; 298():58-72. PubMed ID: 26004054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocatalytic generation of Mn(III)-chelate as a chemical oxidant of different environmental contaminants.
    Taboada-Puig R; Lú-Chau T; Eibes G; Moreira MT; Feijoo G; Lema JM
    Biotechnol Prog; 2011; 27(3):668-76. PubMed ID: 21509948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of decontamination efficacy of cleaning solutions on stainless steel and glass surfaces contaminated by 10 antineoplastic agents.
    Queruau Lamerie T; Nussbaumer S; Décaudin B; Fleury-Souverain S; Goossens JF; Bonnabry P; Odou P
    Ann Occup Hyg; 2013 May; 57(4):456-69. PubMed ID: 23223271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of phenolic environmental pollutants by a surfactant-laccase complex in organic media.
    Michizoe J; Ichinose H; Kamiya N; Maruyama T; Goto M
    J Biosci Bioeng; 2005 Jun; 99(6):642-7. PubMed ID: 16233844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biokinetic aspects for biocatalytic remediation of xenobiotics polluted seawater.
    Younis SA; El-Gendy NS; Nassar HN
    J Appl Microbiol; 2020 Aug; 129(2):319-334. PubMed ID: 32118335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation.
    del Carmen Hernández-Soriano M; Peña A; Mingorance MD
    J Environ Monit; 2011 Oct; 13(10):2830-7. PubMed ID: 21860854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-linked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants.
    Bilal M; Singh AK; Iqbal HMN; Zdarta J; Chrobok A; Jesionowski T
    Environ Res; 2024 Jan; 241():117579. PubMed ID: 37944691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier transform infrared spectroscopy as a novel approach for analyzing the biochemical effects of anionic surfactants on a surfactant-degrading Arcobacter butzleri strain.
    Sarioglu OF; Tamer YT; Ozkan AD; Atabay HI; Molva C; Tekinay T
    Appl Spectrosc; 2013 Apr; 67(4):470-5. PubMed ID: 23601548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe(0) Nanomotors in Ton Quantities (10(20) Units) for Environmental Remediation.
    Teo WZ; Zboril R; Medrik I; Pumera M
    Chemistry; 2016 Mar; 22(14):4789-93. PubMed ID: 26845233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Biocatalytic and Biosorptive Materials for Environmental Applications.
    Zhu B; Chen Y; Wei N
    Trends Biotechnol; 2019 Jun; 37(6):661-676. PubMed ID: 30527644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-Immobilized Porous Crystals for Environmental Applications.
    Wang H; Kou X; Gao R; Huang S; Chen G; Ouyang G
    Environ Sci Technol; 2024 Jul; 58(27):11869-11886. PubMed ID: 38940189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilayer Tubular Micromotors for Simultaneous Environmental Monitoring and Remediation.
    Liang C; Zhan C; Zeng F; Xu D; Wang Y; Zhao W; Zhang J; Guo J; Feng H; Ma X
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35099-35107. PubMed ID: 30246523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant-enhanced remediation of organic contaminated soil and water.
    Paria S
    Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants.
    Morsi R; Bilal M; Iqbal HMN; Ashraf SS
    Sci Total Environ; 2020 Apr; 714():136572. PubMed ID: 31986384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of operating conditions on the efficiency of vapor phase hydrogen peroxide in the degradation of 4-(dimethylamino)benzaldehyde.
    Svrcek J; Marhoul A; Kacer P; Kuzma M; Pánek L; Cervený L
    Chemosphere; 2010 Oct; 81(5):617-25. PubMed ID: 20833407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant remediation of diesel fuel polluted soil.
    Khalladi R; Benhabiles O; Bentahar F; Moulai-Mostefa N
    J Hazard Mater; 2009 May; 164(2-3):1179-84. PubMed ID: 18977072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.