These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 24501057)
1. Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Johnson VR; Russell BD; Fabricius KE; Brownlee C; Hall-Spencer JM Glob Chang Biol; 2012 Sep; 18(9):2792-803. PubMed ID: 24501057 [TBL] [Abstract][Full Text] [Related]
2. Cascading effects of ocean acidification in a rocky subtidal community. Asnaghi V; Chiantore M; Mangialajo L; Gazeau F; Francour P; Alliouane S; Gattuso JP PLoS One; 2013; 8(4):e61978. PubMed ID: 23613994 [TBL] [Abstract][Full Text] [Related]
3. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Koch M; Bowes G; Ross C; Zhang XH Glob Chang Biol; 2013 Jan; 19(1):103-32. PubMed ID: 23504724 [TBL] [Abstract][Full Text] [Related]
4. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae. Scherner F; Pereira CM; Duarte G; Horta PA; E Castro CB; Barufi JB; Pereira SM PLoS One; 2016; 11(5):e0154844. PubMed ID: 27158820 [TBL] [Abstract][Full Text] [Related]
5. Biogenic habitat shifts under long-term ocean acidification show nonlinear community responses and unbalanced functions of associated invertebrates. Milazzo M; Alessi C; Quattrocchi F; Chemello R; D'Agostaro R; Gil J; Vaccaro AM; Mirto S; Gristina M; Badalamenti F Sci Total Environ; 2019 Jun; 667():41-48. PubMed ID: 30825820 [TBL] [Abstract][Full Text] [Related]
6. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
7. Effects of climate change factors on marine macroalgae: A review. Ji Y; Gao K Adv Mar Biol; 2021; 88():91-136. PubMed ID: 34119047 [TBL] [Abstract][Full Text] [Related]
8. Decreased Diversity and Abundance of Marine Invertebrates at CO Hall-Spencer JM; Belfiore G; Tomatsuri M; Porzio L; Harvey BP; Agostini S; Kon K Zoolog Sci; 2022 Feb; 39(1):41-51. PubMed ID: 35106992 [TBL] [Abstract][Full Text] [Related]
9. Productivity gains do not compensate for reduced calcification under near-future ocean acidification in the photosynthetic benthic foraminifer species Marginopora vertebralis. Uthicke S; Fabricius KE Glob Chang Biol; 2012 Sep; 18(9):2781-91. PubMed ID: 24501056 [TBL] [Abstract][Full Text] [Related]
10. Major loss of coralline algal diversity in response to ocean acidification. Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846 [TBL] [Abstract][Full Text] [Related]
11. Bottom-up effects on biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) in an acidified ocean scenario. Asnaghi V; Collard M; Mangialajo L; Gattuso JP; Dubois P Mar Environ Res; 2019 Feb; 144():56-61. PubMed ID: 30591257 [TBL] [Abstract][Full Text] [Related]
12. Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient. Pettit LR; Smart CW; Hart MB; Milazzo M; Hall-Spencer JM Ecol Evol; 2015 May; 5(9):1784-93. PubMed ID: 26140195 [TBL] [Abstract][Full Text] [Related]
13. Blue carbon: past, present and future, with emphasis on macroalgae. Raven J Biol Lett; 2018 Oct; 14(10):. PubMed ID: 30282745 [TBL] [Abstract][Full Text] [Related]
14. Calcification in Three Common Calcified Algae from Phuket, Thailand: Potential Relevance on Seawater Carbonate Chemistry and Link to Photosynthetic Process. Buapet P; Sinutok S Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834900 [TBL] [Abstract][Full Text] [Related]
15. Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of volcanic CO Nogueira P; Gambi MC; Vizzini S; Califano G; Tavares AM; Santos R; Martínez-Crego B Mar Environ Res; 2017 Jun; 127():102-111. PubMed ID: 28413104 [TBL] [Abstract][Full Text] [Related]
16. Sea anemones may thrive in a high CO Suggett DJ; Hall-Spencer JM; Rodolfo-Metalpa R; Boatman TG; Payton R; Tye Pettay D; Johnson VR; Warner ME; Lawson T Glob Chang Biol; 2012 Oct; 18(10):3015-3025. PubMed ID: 28741826 [TBL] [Abstract][Full Text] [Related]
17. In situ changes of tropical crustose coralline algae along carbon dioxide gradients. Fabricius KE; Kluibenschedl A; Harrington L; Noonan S; De'ath G Sci Rep; 2015 Apr; 5():9537. PubMed ID: 25835382 [TBL] [Abstract][Full Text] [Related]
18. Effects of ocean acidification and diet on thickness and carbonate elemental composition of the test of juvenile sea urchins. Asnaghi V; Mangialajo L; Gattuso JP; Francour P; Privitera D; Chiantore M Mar Environ Res; 2014 Feb; 93():78-84. PubMed ID: 24050836 [TBL] [Abstract][Full Text] [Related]
19. Microsensor studies on Padina from a natural CO2 seep: implications of morphology on acclimation to low pH. Hofmann LC; Fink A; Bischof K; de Beer D J Phycol; 2015 Dec; 51(6):1106-15. PubMed ID: 26987005 [TBL] [Abstract][Full Text] [Related]
20. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1). Diaz-Pulido G; Anthony KR; Kline DI; Dove S; Hoegh-Guldberg O J Phycol; 2012 Feb; 48(1):32-9. PubMed ID: 27009647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]