These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24501058)

  • 1. Ocean acidification weakens the structural integrity of coralline algae.
    Ragazzola F; Foster LC; Form A; Anderson PS; Hansteen TH; Fietzke J
    Glob Chang Biol; 2012 Sep; 18(9):2804-12. PubMed ID: 24501058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).
    Diaz-Pulido G; Anthony KR; Kline DI; Dove S; Hoegh-Guldberg O
    J Phycol; 2012 Feb; 48(1):32-9. PubMed ID: 27009647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic plasticity of coralline algae in a High CO2 world.
    Ragazzola F; Foster LC; Form AU; Büscher J; Hansteen TH; Fietzke J
    Ecol Evol; 2013 Sep; 3(10):3436-46. PubMed ID: 24223280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale.
    Ragazzola F; Foster LC; Jones CJ; Scott TB; Fietzke J; Kilburn MR; Schmidt DN
    Sci Rep; 2016 Feb; 6():20572. PubMed ID: 26853562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification.
    Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P
    Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures.
    Noisette F; Duong G; Six C; Davoult D; Martin S
    J Phycol; 2013 Aug; 49(4):746-57. PubMed ID: 27007207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocean acidification and its potential effects on marine ecosystems.
    Guinotte JM; Fabry VJ
    Ann N Y Acad Sci; 2008; 1134():320-42. PubMed ID: 18566099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Productivity gains do not compensate for reduced calcification under near-future ocean acidification in the photosynthetic benthic foraminifer species Marginopora vertebralis.
    Uthicke S; Fabricius KE
    Glob Chang Biol; 2012 Sep; 18(9):2781-91. PubMed ID: 24501056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coralline algae elevate pH at the site of calcification under ocean acidification.
    Cornwall CE; Comeau S; McCulloch MT
    Glob Chang Biol; 2017 Oct; 23(10):4245-4256. PubMed ID: 28370806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria.
    Dickinson GH; Matoo OB; Tourek RT; Sokolova IM; Beniash E
    J Exp Biol; 2013 Jul; 216(Pt 14):2607-18. PubMed ID: 23531824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).
    Wolfe K; Dworjanyn SA; Byrne M
    Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major loss of coralline algal diversity in response to ocean acidification.
    Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM
    Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruitment and Succession in a Tropical Benthic Community in Response to In-Situ Ocean Acidification.
    Crook ED; Kroeker KJ; Potts DC; Rebolledo-Vieyra M; Hernandez-Terrones LM; Paytan A
    PLoS One; 2016; 11(1):e0146707. PubMed ID: 26784986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification.
    Cavalcanti GS; Shukla P; Morris M; Ribeiro B; Foley M; Doane MP; Thompson CC; Edwards MS; Dinsdale EA; Thompson FL
    BMC Genomics; 2018 Sep; 19(1):701. PubMed ID: 30249182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylomineralogy of the coralline red algae: correlation of skeletal mineralogy with molecular phylogeny.
    Smith AM; Sutherland JE; Kregting L; Farr TJ; Winter DJ
    Phytochemistry; 2012 Sep; 81():97-108. PubMed ID: 22795764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global assessment of coralline algae mineralogy points to high vulnerability of Southwestern Atlantic reefs and rhodolith beds to ocean acidification.
    de Carvalho RT; Rocha GM; Karez CS; da Gama Bahia R; Pereira RC; Bastos AC; Salgado LT
    Sci Rep; 2022 Jun; 12(1):9589. PubMed ID: 35688967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequences of Warming and Acidification for the Temperate Articulated Coralline Alga, Calliarthron Tuberculosum (Florideophyceae, Rhodophyta).
    Donham EM; Hamilton SL; Aiello I; Price NN; Smith JE
    J Phycol; 2022 Aug; 58(4):517-529. PubMed ID: 35657106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change.
    McCoy SJ; Kamenos NA
    J Phycol; 2015 Feb; 51(1):6-24. PubMed ID: 26986255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow-flow habitats as refugia for coastal calcifiers from ocean acidification.
    Hurd CL
    J Phycol; 2015 Aug; 51(4):599-605. PubMed ID: 26986784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature.
    Martin S; Cohu S; Vignot C; Zimmerman G; Gattuso JP
    Ecol Evol; 2013 Mar; 3(3):676-93. PubMed ID: 23533024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.