These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 24501058)
21. Near-future ocean acidification causes differences in microbial associations within diverse coral reef taxa. Webster NS; Negri AP; Flores F; Humphrey C; Soo R; Botté ES; Vogel N; Uthicke S Environ Microbiol Rep; 2013 Apr; 5(2):243-51. PubMed ID: 23584968 [TBL] [Abstract][Full Text] [Related]
22. Ocean acidification reduces the crystallographic control in juvenile mussel shells. Fitzer SC; Cusack M; Phoenix VR; Kamenos NA J Struct Biol; 2014 Oct; 188(1):39-45. PubMed ID: 25180664 [TBL] [Abstract][Full Text] [Related]
23. Morphology of the crustose coralline alga Pseudolithophyllum muricatum (Corallinales, Rhodophyta) responds to 30 years of ocean acidification in the Northeast Pacific. McCoy SJ J Phycol; 2013 Oct; 49(5):830-7. PubMed ID: 27007309 [TBL] [Abstract][Full Text] [Related]
24. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Gruber N Philos Trans A Math Phys Eng Sci; 2011 May; 369(1943):1980-96. PubMed ID: 21502171 [TBL] [Abstract][Full Text] [Related]
25. TESTING THE EFFECTS OF OCEAN ACIDIFICATION ON ALGAL METABOLISM: CONSIDERATIONS FOR EXPERIMENTAL DESIGNS(1). Hurd CL; Hepburn CD; Currie KI; Raven JA; Hunter KA J Phycol; 2009 Dec; 45(6):1236-51. PubMed ID: 27032579 [TBL] [Abstract][Full Text] [Related]
26. Red coralline algae assessed as marine pH proxies using 11B MAS NMR. Cusack M; Kamenos NA; Rollion-Bard C; Tricot G Sci Rep; 2015 Feb; 5():8175. PubMed ID: 25640229 [TBL] [Abstract][Full Text] [Related]
27. Arctic Coralline Algae Elevate Surface pH and Carbonate in the Dark. Hofmann LC; Schoenrock K; de Beer D Front Plant Sci; 2018; 9():1416. PubMed ID: 30319676 [TBL] [Abstract][Full Text] [Related]
28. Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size. Kamenos NA; Perna G; Gambi MC; Micheli F; Kroeker KJ Proc Biol Sci; 2016 Oct; 283(1840):. PubMed ID: 27733544 [TBL] [Abstract][Full Text] [Related]
29. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). Schoenrock KM; Bacquet M; Pearce D; Rea BR; Schofield JE; Lea J; Mair D; Kamenos N J Phycol; 2018 Oct; 54(5):690-702. PubMed ID: 30079466 [TBL] [Abstract][Full Text] [Related]
30. First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum. Rahman MA; Halfar J Sci Rep; 2014 Aug; 4():6162. PubMed ID: 25145331 [TBL] [Abstract][Full Text] [Related]
31. Decline in coccolithophore diversity and impact on coccolith morphogenesis along a natural CO2 gradient. Ziveri P; Passaro M; Incarbona A; Milazzo M; Rodolfo-Metalpa R; Hall-Spencer JM Biol Bull; 2014 Jun; 226(3):282-90. PubMed ID: 25070871 [TBL] [Abstract][Full Text] [Related]
32. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Thomsen J; Casties I; Pansch C; Körtzinger A; Melzner F Glob Chang Biol; 2013 Apr; 19(4):1017-27. PubMed ID: 23504880 [TBL] [Abstract][Full Text] [Related]
34. Aragonite infill in overgrown conceptacles of coralline Lithothamnion spp. (Hapalidiaceae, Hapalidiales, Rhodophyta): new insights in biomineralization and phylomineralogy. Krayesky-Self S; Richards JL; Rahmatian M; Fredericq S J Phycol; 2016 Apr; 52(2):161-73. PubMed ID: 27037582 [TBL] [Abstract][Full Text] [Related]
35. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Koch M; Bowes G; Ross C; Zhang XH Glob Chang Biol; 2013 Jan; 19(1):103-32. PubMed ID: 23504724 [TBL] [Abstract][Full Text] [Related]
36. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Reyes-Nivia C; Diaz-Pulido G; Kline D; Guldberg OH; Dove S Glob Chang Biol; 2013 Jun; 19(6):1919-29. PubMed ID: 23505093 [TBL] [Abstract][Full Text] [Related]
37. Historical comparisons reveal altered competitive interactions in a guild of crustose coralline algae. McCoy SJ; Pfister CA Ecol Lett; 2014 Apr; 17(4):475-83. PubMed ID: 24422586 [TBL] [Abstract][Full Text] [Related]
38. Tidal downwelling and implications for the carbon biogeochemistry of cold-water corals in relation to future ocean acidification and warming. Findlay HS; Artioli Y; Moreno Navas J; Hennige SJ; Wicks LC; Huvenne VA; Woodward EM; Roberts JM Glob Chang Biol; 2013 Sep; 19(9):2708-19. PubMed ID: 23666812 [TBL] [Abstract][Full Text] [Related]
39. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. Johnson MD; Price NN; Smith JE PeerJ; 2014; 2():e411. PubMed ID: 24918033 [TBL] [Abstract][Full Text] [Related]
40. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. Glover AG; Gooday AJ; Bailey DM; Billett DS; Chevaldonné P; Colaço A; Copley J; Cuvelier D; Desbruyères D; Kalogeropoulou V; Klages M; Lampadariou N; Lejeusne C; Mestre NC; Paterson GL; Perez T; Ruhl H; Sarrazin J; Soltwedel T; Soto EH; Thatje S; Tselepides A; Van Gaever S; Vanreusel A Adv Mar Biol; 2010; 58():1-95. PubMed ID: 20959156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]