These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24501223)

  • 1. A stochastic model of translation with -1 programmed ribosomal frameshifting.
    Bailey BL; Visscher K; Watkins J
    Phys Biol; 2014 Feb; 11(1):016009. PubMed ID: 24501223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic control of -1 programmed ribosomal frameshifting.
    Bock LV; Caliskan N; Korniy N; Peske F; Rodnina MV; Grubmüller H
    Nat Commun; 2019 Oct; 10(1):4598. PubMed ID: 31601802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An "integrated model" of programmed ribosomal frameshifting.
    Harger JW; Meskauskas A; Dinman JD
    Trends Biochem Sci; 2002 Sep; 27(9):448-54. PubMed ID: 12217519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyamine sensing during antizyme mRNA programmed frameshifting.
    Petros LM; Howard MT; Gesteland RF; Atkins JF
    Biochem Biophys Res Commun; 2005 Dec; 338(3):1478-89. PubMed ID: 16269132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential stability of the mRNA secondary structures in the frameshift site of various HIV type 1 viruses.
    Chang SY; Sutthent R; Auewarakul P; Apichartpiyakul C; Essex M; Lee TH
    AIDS Res Hum Retroviruses; 1999 Nov; 15(17):1591-6. PubMed ID: 10580411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence element required for efficient -1 ribosomal frameshifting in red clover necrotic mosaic dianthovirus.
    Kim KH; Lommel SA
    Virology; 1998 Oct; 250(1):50-9. PubMed ID: 9770419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms and biomedical implications of -1 programmed ribosome frameshifting on viral and bacterial mRNAs.
    Korniy N; Samatova E; Anokhina MM; Peske F; Rodnina MV
    FEBS Lett; 2019 Jul; 593(13):1468-1482. PubMed ID: 31222875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Live-Cell Single RNA Imaging Reveals Bursts of Translational Frameshifting.
    Lyon K; Aguilera LU; Morisaki T; Munsky B; Stasevich TJ
    Mol Cell; 2019 Jul; 75(1):172-183.e9. PubMed ID: 31178355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 5' UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed -1 ribosomal frameshift that generates HIV-1 enzymes.
    Charbonneau J; Gendron K; Ferbeyre G; Brakier-Gingras L
    RNA; 2012 Mar; 18(3):519-29. PubMed ID: 22286970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative mutational analysis of cis-acting RNA signals for translational frameshifting in HIV-1 and HTLV-2.
    Kim YG; Maas S; Rich A
    Nucleic Acids Res; 2001 Mar; 29(5):1125-31. PubMed ID: 11222762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed -1 Ribosomal Frameshifting.
    Wang X; Xuan Y; Han Y; Ding X; Ye K; Yang F; Gao P; Goff SP; Gao G
    Cell; 2019 Jan; 176(3):625-635.e14. PubMed ID: 30682371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense-induced ribosomal frameshifting.
    Henderson CM; Anderson CB; Howard MT
    Nucleic Acids Res; 2006; 34(15):4302-10. PubMed ID: 16920740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting ribosomal frameshifting efficiency.
    Cao S; Chen SJ
    Phys Biol; 2008 Mar; 5(1):016002. PubMed ID: 18367782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding.
    Ritchie DB; Foster DA; Woodside MT
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16167-72. PubMed ID: 22988073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The energy landscape of -1 ribosomal frameshifting.
    Choi J; O'Loughlin S; Atkins JF; Puglisi JD
    Sci Adv; 2020 Jan; 6(1):eaax6969. PubMed ID: 31911945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal.
    Bidou L; Stahl G; Grima B; Liu H; Cassan M; Rousset JP
    RNA; 1997 Oct; 3(10):1153-8. PubMed ID: 9326490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of +1 programmed frameshifting signals and frameshift-regulating tRNAs in the order Saccharomycetales.
    Farabaugh PJ; Kramer E; Vallabhaneni H; Raman A
    J Mol Evol; 2006 Oct; 63(4):545-61. PubMed ID: 16838213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.