These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24501559)

  • 21. The musculoskeletal system of humans is not tuned to maximize the economy of locomotion.
    Carrier DR; Anders C; Schilling N
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18631-6. PubMed ID: 22065766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal speeds for walking and running, and walking on a moving walkway.
    Srinivasan M
    Chaos; 2009 Jun; 19(2):026112. PubMed ID: 19566272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of optic flow on spontaneous overground walk-to-run transition.
    De Smet K; Malcolm P; Lenoir M; Segers V; De Clercq D
    Exp Brain Res; 2009 Mar; 193(4):501-8. PubMed ID: 19034439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The application of ground force explains the energetic cost of running backward and forward.
    Wright S; Weyand PG
    J Exp Biol; 2001 May; 204(Pt 10):1805-15. PubMed ID: 11316501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vaulting mechanics successfully predict decrease in walk-run transition speed with incline.
    Hubel TY; Usherwood JR
    Biol Lett; 2013 Apr; 9(2):20121121. PubMed ID: 23325739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of energy expenditure in forward and backward movements performed by soccer referees.
    Paes MR; Fernandez R
    Braz J Med Biol Res; 2016; 49(5):e5061. PubMed ID: 27074169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Comparison of PlayerLoad
    Barnes MR; Guy JH; Elsworthy N; Scanlan AT
    Sports (Basel); 2021 Jan; 9(2):. PubMed ID: 33503817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diurnal variation in gait characteristics and transition speed.
    Bessot N; Lericollais R; Gauthier A; Sesboüé B; Bulla J; Moussay S
    Chronobiol Int; 2015 Feb; 32(1):136-42. PubMed ID: 25229209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of speed on local dynamic stability of locomotion under different task constraints in running.
    Mehdizadeh S; Arshi AR; Davids K
    Eur J Sport Sci; 2014; 14(8):791-8. PubMed ID: 24720520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in the preferred transition speed with added mass to the foot.
    MacLeod TD; Hreljac A; Imamura R
    J Appl Biomech; 2014 Feb; 30(1):95-103. PubMed ID: 23878265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates.
    Seethapathi N; Srinivasan M
    Biol Lett; 2015 Sep; 11(9):20150486. PubMed ID: 26382072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The relationship between joint kinetic factors and the walk-run gait transition speed during human locomotion.
    Hreljac A; Imamura RT; Escamilla RF; Edwards WB; MacLeod T
    J Appl Biomech; 2008 May; 24(2):149-57. PubMed ID: 18579907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Walk-, run- and gallop-like gait patterns in human sideways locomotion.
    Yamashita D; Shinya M; Fujii K; Oda S; Kouzaki M
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1480-4. PubMed ID: 24055531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of direction and speed on treadmill walking in typically developing children.
    Henderson G; Ferreira D; Wu J
    Gait Posture; 2021 Feb; 84():169-174. PubMed ID: 33341463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic costs and rating of perceived exertion during backward walking in water and on dry land.
    Masumoto K; Hamada A; Tomonaga HO; Kodama K; Amamoto Y; Nishizaki Y; Hotta N
    Res Sports Med; 2015; 23(1):27-36. PubMed ID: 25630244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of changing protocol, grade, and direction on the preferred gait transition speed during human locomotion.
    Hreljac A; Imamura R; Escamilla RF; Edwards WB
    Gait Posture; 2007 Mar; 25(3):419-24. PubMed ID: 16793272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lower leg muscle force prediction in gait transition.
    Taira C; Kawada M; Kiyama R; Forner-Cordero A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4867-4870. PubMed ID: 34892299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The transition between walking and running in humans: metabolic and mechanical aspects at different gradients.
    Minetti AE; Ardigò LP; Saibene F
    Acta Physiol Scand; 1994 Mar; 150(3):315-23. PubMed ID: 8010138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.
    Prilutsky BI; Gregor RJ
    J Exp Biol; 2001 Jul; 204(Pt 13):2277-87. PubMed ID: 11507111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.