BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 2450205)

  • 1. 19F nuclear magnetic resonance as a probe of anticodon structure in 5-fluorouracil-substituted Escherichia coli transfer RNA.
    Gollnick P; Hardin CC; Horowitz J
    J Mol Biol; 1987 Oct; 197(3):571-84. PubMed ID: 2450205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations between fluorine-19 nuclear magnetic resonance chemical shift and the secondary and tertiary structure of 5-fluorouracil-substituted tRNA.
    Chu WC; Kintanar A; Horowitz J
    J Mol Biol; 1992 Oct; 227(4):1173-81. PubMed ID: 1279181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorine-19 nuclear magnetic resonance study of codon-anticodon interaction in 5-fluorouracil-substituted E. coli transfer RNAs.
    Gollnick P; Hardin CC; Horowitz J
    Nucleic Acids Res; 1986 Jun; 14(11):4659-72. PubMed ID: 3520488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorine-19 nuclear magnetic resonance as a probe of the solution structure of mutants of 5-fluorouracil-substituted Escherichia coli valine tRNA.
    Chu WC; Feiz V; Derrick WB; Horowitz J
    J Mol Biol; 1992 Oct; 227(4):1164-72. PubMed ID: 1279180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial assignment of resonances in the 19F nuclear magnetic resonance spectra of 5-fluorouracil-substituted transfer RNAs.
    Hardin CC; Gollnick P; Horowitz J
    Biochemistry; 1988 Jan; 27(1):487-95. PubMed ID: 3280022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorine-19 nuclear magnetic resonance studies of the structure of 5-fluorouracil-substituted Escherichia coli transfer RNA.
    Hardin CC; Gollnick P; Kallenbach NR; Cohn M; Horowitz J
    Biochemistry; 1986 Sep; 25(19):5699-709. PubMed ID: 3535884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 19F NMR of 5-fluorouracil-substituted transfer RNA transcribed in vitro: resonance assignment of fluorouracil-guanine base pairs.
    Chu WC; Horowitz J
    Nucleic Acids Res; 1989 Sep; 17(18):7241-52. PubMed ID: 2798092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobility of individual 5-fluorouridine residues in 5-fluorouracil-substituted Escherichia coli valine transfer RNA. A 19F nuclear magnetic resonance relaxation study.
    Hardin CC; Horowitz J
    J Mol Biol; 1987 Oct; 197(3):555-69. PubMed ID: 2450204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the fluorodihydrouracil substituent in 5-fluorouracil-containing Escherichia coli transfer RNA.
    Horowitz J; Cotten ML; Hardin CC; Gollnick P
    Biochim Biophys Acta; 1983 Oct; 741(1):70-6. PubMed ID: 6351924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: a fluorine-19 NMR study.
    Chu WC; Horowitz J
    Biochemistry; 1991 Feb; 30(6):1655-63. PubMed ID: 1847071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop.
    Gorenstein DG; Goldfield EM
    Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleoside modifications stabilize Mg2+ binding in Escherichia coli tRNA(Val): an imino proton NMR investigation.
    Yue D; Kintanar A; Horowitz J
    Biochemistry; 1994 Aug; 33(30):8905-11. PubMed ID: 8043578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of two 5-fluorouracil-substituted Escherichia coli initiator methionine transfer ribonucleic acids.
    Hills DC; Cotten ML; Horowitz J
    Biochemistry; 1983 Mar; 22(5):1113-22. PubMed ID: 6188484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids.
    Gorenstein DG; Goldfield EM
    Mol Cell Biochem; 1982 Jul; 46(2):97-120. PubMed ID: 6180293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding.
    Vendeix FA; Dziergowska A; Gustilo EM; Graham WD; Sproat B; Malkiewicz A; Agris PF
    Biochemistry; 2008 Jun; 47(23):6117-29. PubMed ID: 18473483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorine-19 NMR studies of the thermal unfolding of 5-fluorouracil-substituted Escherichia coli valine transfer RNA.
    Chu WC; Horowitz J
    FEBS Lett; 1991 Dec; 295(1-3):159-62. PubMed ID: 1765149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of acceptor stem conformation in tRNAVal recognition by its cognate synthetase.
    Liu M; Chu WC; Liu JC; Horowitz J
    Nucleic Acids Res; 1997 Dec; 25(24):4883-90. PubMed ID: 9396792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of 2'-hydroxyl groups required for interaction of a tRNA anticodon stem-loop region with the ribosome.
    von Ahsen U; Green R; Schroeder R; Noller HF
    RNA; 1997 Jan; 3(1):49-56. PubMed ID: 8990398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetase recognition determinants of E. coli valine transfer RNA.
    Horowitz J; Chu WC; Derrick WB; Liu JC; Liu M; Yue D
    Biochemistry; 1999 Jun; 38(24):7737-46. PubMed ID: 10387013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.