BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24502629)

  • 1. Progress toward the determination of correct classification rates in fire debris analysis II: utilizing soft independent modeling of class analogy (SIMCA).
    Waddell EE; Williams MR; Sigman ME
    J Forensic Sci; 2014 Jul; 59(4):927-35. PubMed ID: 24502629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress toward the determination of correct classification rates in fire debris analysis.
    Waddell EE; Song ET; Rinke CN; Williams MR; Sigman ME
    J Forensic Sci; 2013 Jul; 58(4):887-96. PubMed ID: 23551258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis.
    Lopatka M; Sigman ME; Sjerps MJ; Williams MR; Vivó-Truyols G
    Forensic Sci Int; 2015 Jul; 252():177-86. PubMed ID: 26005858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: forensic fire debris analysis.
    Williams MR; Sigman ME; Lewis J; Pitan KM
    Forensic Sci Int; 2012 Oct; 222(1-3):373-86. PubMed ID: 22920087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical cluster analysis of ignitable liquids based on the total ion spectrum.
    Waddell EE; Frisch-Daiello JL; Williams MR; Sigman ME
    J Forensic Sci; 2014 Sep; 59(5):1198-204. PubMed ID: 24962674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M
    Talanta; 2019 Jul; 199():189-194. PubMed ID: 30952245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics.
    Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of self-organizing feature maps to analyze the relationships between ignitable liquids and selected mass spectral ions.
    Frisch-Daiello JL; Williams MR; Waddell EE; Sigman ME
    Forensic Sci Int; 2014 Mar; 236():84-9. PubMed ID: 24529778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose.
    Falatová B; Ferreiro-González M; Martín-Alberca C; Kačíková D; Galla Š; Palma M; G Barroso C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris.
    Lu Y; Harrington PB
    Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography.
    Frysinger GS; Gaines RB
    J Forensic Sci; 2002 May; 47(3):471-82. PubMed ID: 12051325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial degradation of ignitable liquids on building materials.
    Hutches K
    Forensic Sci Int; 2013 Oct; 232(1-3):e38-41. PubMed ID: 24008200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of gasoline in fire debris using machine learning: Part I, application of random forest, gradient boosting, support vector machine, and naïve bayes.
    Bogdal C; Schellenberg R; Höpli O; Bovens M; Lory M
    Forensic Sci Int; 2022 Feb; 331():111146. PubMed ID: 34968789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris.
    Fettig I; Krüger S; Deubel JH; Werrel M; Raspe T; Piechotta C
    J Forensic Sci; 2014 May; 59(3):743-9. PubMed ID: 24329005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Alkylate Components for Classifying Gasoline in Fire Debris Samples.
    Peschier LJC; Grutters MMP; Hendrikse JN
    J Forensic Sci; 2018 Mar; 63(2):420-430. PubMed ID: 28556928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of oxygenated ignitable liquids by zeolites, Part I: Novel extraction methodology in fire debris analysis.
    St Pierre KA; Desiderio VJ; Hall AB
    Forensic Sci Int; 2014 Jul; 240():137-43. PubMed ID: 24780556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of gasoline in fire debris using machine learning: Part II, application of a neural network.
    Bogdal C; Schellenberg R; Lory M; Bovens M; Höpli O
    Forensic Sci Int; 2022 Mar; 332():111177. PubMed ID: 35065332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of modern challenges in fire debris analysis.
    Baerncopf J; Hutches K
    Forensic Sci Int; 2014 Nov; 244():e12-20. PubMed ID: 25193144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.