These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system. Sabharwal R; Chapleau MW Exp Physiol; 2014 Apr; 99(4):627-31. PubMed ID: 24334334 [TBL] [Abstract][Full Text] [Related]
3. Angiotensin-dependent autonomic dysregulation precedes dilated cardiomyopathy in a mouse model of muscular dystrophy. Sabharwal R; Weiss RM; Zimmerman K; Domenig O; Cicha MZ; Chapleau MW Exp Physiol; 2015 Jul; 100(7):776-95. PubMed ID: 25921929 [TBL] [Abstract][Full Text] [Related]
4. Transforming growth factor type-β inhibits Mas receptor expression in fibroblasts but not in myoblasts or differentiated myotubes; Relevance to fibrosis associated to muscular dystrophies. Cofre C; Acuña MJ; Contreras O; Morales MG; Riquelme C; Cabello-Verrugio C; Brandan E Biofactors; 2015; 41(2):111-20. PubMed ID: 25809912 [TBL] [Abstract][Full Text] [Related]
5. Thrombospondin-4 deletion does not exacerbate muscular dystrophy in β-sarcoglycan-deficient and laminin α2 chain-deficient mice. Zarén P; Gawlik KI Sci Rep; 2024 Jun; 14(1):14757. PubMed ID: 38926599 [TBL] [Abstract][Full Text] [Related]
6. Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism. Cisternas F; Morales MG; Meneses C; Simon F; Brandan E; Abrigo J; Vazquez Y; Cabello-Verrugio C Clin Sci (Lond); 2015 Mar; 128(5):307-19. PubMed ID: 25222828 [TBL] [Abstract][Full Text] [Related]
7. Gene transfer establishes primacy of striated vs. smooth muscle sarcoglycan complex in limb-girdle muscular dystrophy. Durbeej M; Sawatzki SM; Barresi R; Schmainda KM; Allamand V; Michele DE; Campbell KP Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8910-5. PubMed ID: 12851463 [TBL] [Abstract][Full Text] [Related]
8. Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. Goonasekera SA; Lam CK; Millay DP; Sargent MA; Hajjar RJ; Kranias EG; Molkentin JD J Clin Invest; 2011 Mar; 121(3):1044-52. PubMed ID: 21285509 [TBL] [Abstract][Full Text] [Related]
9. Differential histological features and myogenic protein levels in distinct muscles of d-sarcoglycan null muscular dystrophy mouse model. Palma-Flores C; Cano-Martínez LJ; Fernández-Valverde F; Torres-Pérez I; de Los Santos S; Hernández-Hernández JM; Hernández-Herrera AF; García S; Canto P; Zentella-Dehesa A; Coral-Vázquez RM J Mol Histol; 2023 Aug; 54(4):405-413. PubMed ID: 37358754 [TBL] [Abstract][Full Text] [Related]
10. Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling. Acuña MJ; Pessina P; Olguin H; Cabrera D; Vio CP; Bader M; Muñoz-Canoves P; Santos RA; Cabello-Verrugio C; Brandan E Hum Mol Genet; 2014 Mar; 23(5):1237-49. PubMed ID: 24163134 [TBL] [Abstract][Full Text] [Related]
11. Various effects of AAV9-mediated βARKct gene therapy on the heart in dystrophin-deficient (mdx) mice and δ-sarcoglycan-deficient (Sgcd-/-) mice. Bauer R; Enns H; Jungmann A; Leuchs B; Volz C; Schinkel S; Koch WJ; Raake PW; Most P; Katus HA; Müller OJ Neuromuscul Disord; 2019 Mar; 29(3):231-241. PubMed ID: 30782477 [TBL] [Abstract][Full Text] [Related]
12. Prevention of cardiomyopathy in delta-sarcoglycan knockout mice after systemic transfer of targeted adeno-associated viral vectors. Goehringer C; Rutschow D; Bauer R; Schinkel S; Weichenhan D; Bekeredjian R; Straub V; Kleinschmidt JA; Katus HA; Müller OJ Cardiovasc Res; 2009 Jun; 82(3):404-10. PubMed ID: 19218289 [TBL] [Abstract][Full Text] [Related]
13. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas. Morales MG; Abrigo J; Acuña MJ; Santos RA; Bader M; Brandan E; Simon F; Olguin H; Cabrera D; Cabello-Verrugio C Dis Model Mech; 2016 Apr; 9(4):441-9. PubMed ID: 26851244 [TBL] [Abstract][Full Text] [Related]
14. Mutations in the delta-sarcoglycan gene are a rare cause of autosomal recessive limb-girdle muscular dystrophy (LGMD2). Duggan DJ; Manchester D; Stears KP; Mathews DJ; Hart C; Hoffman EP Neurogenetics; 1997 May; 1(1):49-58. PubMed ID: 10735275 [TBL] [Abstract][Full Text] [Related]
15. Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1-7) through a p38 MAPK-dependent mechanism. Morales MG; Olguín H; Di Capua G; Brandan E; Simon F; Cabello-Verrugio C Clin Sci (Lond); 2015 Sep; 129(6):461-76. PubMed ID: 25989282 [TBL] [Abstract][Full Text] [Related]
16. Natural disease history of mouse models for limb girdle muscular dystrophy types 2D and 2F. Pasteuning-Vuhman S; Putker K; Tanganyika-de Winter CL; Boertje-van der Meulen JW; van Vliet L; Overzier M; Plomp JJ; Aartsma-Rus A; van Putten M PLoS One; 2017; 12(8):e0182704. PubMed ID: 28797108 [TBL] [Abstract][Full Text] [Related]
17. Steroid treatment causes deterioration of myocardial function in the {delta}-sarcoglycan-deficient mouse model for dilated cardiomyopathy. Bauer R; Macgowan GA; Blain A; Bushby K; Straub V Cardiovasc Res; 2008 Sep; 79(4):652-61. PubMed ID: 18495669 [TBL] [Abstract][Full Text] [Related]
18. Loss of dystrophin and β-sarcoglycan significantly exacerbates the phenotype of laminin α2 chain-deficient animals. Gawlik KI; Holmberg J; Durbeej M Am J Pathol; 2014 Mar; 184(3):740-52. PubMed ID: 24393714 [TBL] [Abstract][Full Text] [Related]
19. SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy. Goldstein JA; Kelly SM; LoPresti PP; Heydemann A; Earley JU; Ferguson EL; Wolf MJ; McNally EM Hum Mol Genet; 2011 Mar; 20(5):894-904. PubMed ID: 21138941 [TBL] [Abstract][Full Text] [Related]
20. Cross-sectional study into age-related pathology of mouse models for limb girdle muscular dystrophy types 2D and 2F. Verhaart IEC; Putker K; van de Vijver D; Tanganyika-de Winter CL; Pasteuning-Vuhman S; Plomp JJ; Aartsma-Rus AM; van Putten M PLoS One; 2019; 14(8):e0220665. PubMed ID: 31430305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]