BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24502819)

  • 1. Hypoxia-induced developmental plasticity of the gills and air-breathing organ of Trichopodus trichopterus.
    Blank T; Burggren W
    J Fish Biol; 2014 Mar; 84(3):808-26. PubMed ID: 24502819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia-induced developmental plasticity of larval growth, gill and labyrinth organ morphometrics in two anabantoid fish: The facultative air-breather Siamese fighting fish (Betta splendens) and the obligate air-breather the blue gourami (Trichopodus trichopterus).
    Mendez-Sanchez JF; Burggren WW
    J Morphol; 2019 Feb; 280(2):193-204. PubMed ID: 30570160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental modulation of the onset of air breathing and survival of Betta splendens and Trichopodus trichopterus.
    Mendez-Sanchez JF; Burggren WW
    J Fish Biol; 2014 Mar; 84(3):794-807. PubMed ID: 24502248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiorespiratory physiological phenotypic plasticity in developing air-breathing anabantid fishes (
    Mendez-Sanchez JF; Burggren WW
    Physiol Rep; 2017 Aug; 5(15):. PubMed ID: 28778991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The absence of ion-regulatory suppression in the gills of the aquatic air-breathing fish Trichogaster lalius during oxygen stress.
    Huang CY; Lin HH; Lin CH; Lin HC
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jan; 179():7-16. PubMed ID: 25194989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Very high blood oxygen affinity and large Bohr shift differentiates the air-breathing siamese fighting fish (Betta splendens) from the closely related anabantoid the blue gourami (Trichopodus trichopterus).
    Mendez-Sanchez JF; Burggren WW
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Mar; 229():45-51. PubMed ID: 30503628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hypoxia on ionic regulation, glycogen utilization and antioxidative ability in the gills and liver of the aquatic air-breathing fish Trichogaster microlepis.
    Huang CY; Lin HC; Lin CH
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jan; 179():25-34. PubMed ID: 25218942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.
    Scott GR; Matey V; Mendoza JA; Gilmour KM; Perry SF; Almeida-Val VM; Val AL
    J Comp Physiol B; 2017 Jan; 187(1):117-133. PubMed ID: 27461227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The integument of the nonamphibious goby Gobionellus oceanicus: Its functional morphology and respiratory capacity.
    Aguilar L; Leite RN; Ferreira CA; da Cruz AL
    J Morphol; 2018 Nov; 279(11):1548-1558. PubMed ID: 30407645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and biochemical variations in the gills of 12 aquatic air-breathing anabantoid fish.
    Huang CY; Lin CP; Lin HC
    Physiol Biochem Zool; 2011; 84(2):125-34. PubMed ID: 21460523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.
    Huang CY; Lin CH; Lin HC
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul; 185():24-32. PubMed ID: 25783787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different Oxygen Stresses on the Responses of Branchial Morphology and Protein Expression in the Gills and Labyrinth Organ in the Aquatic Air-breathing Fish,
    Huang CY; Lin HC
    Zool Stud; 2016; 55():e27. PubMed ID: 31966172
    [No Abstract]   [Full Text] [Related]  

  • 13. Ontogeny and paleophysiology of the gill: new insights from larval and air-breathing fish.
    Brauner CJ; Rombough PJ
    Respir Physiol Neurobiol; 2012 Dec; 184(3):293-300. PubMed ID: 22884973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air breathing of aquatic burrow-dwelling eel goby, Odontamblyopus lacepedii (Gobiidae: Amblyopinae).
    Gonzales TT; Katoh M; Ishimatsu A
    J Exp Biol; 2006 Mar; 209(Pt 6):1085-92. PubMed ID: 16513935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gross and fine anatomy of the respiratory vasculature of the mudskipper, Periophthalmodon schlosseri (Gobiidae: Oxudercinae).
    Gonzales TT; Katoh M; Ghaffar MA; Ishimatsu A
    J Morphol; 2011 May; 272(5):629-40. PubMed ID: 21344480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative transcriptome analysis between aquatic and aerial breathing organs of Channa argus to reveal the genetic basis underlying bimodal respiration.
    Jiang Y; Feng S; Xu J; Zhang S; Li S; Sun X; Xu P
    Mar Genomics; 2016 Oct; 29():89-96. PubMed ID: 27318671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bimodal gas exchange strategies of dragonfly nymphs across development.
    de Pennart A; Matthews PGD
    J Insect Physiol; 2020 Jan; 120():103982. PubMed ID: 31747551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is the most efficient respiratory organ for the loricariid air-breathing fish Pterygoplichthys anisitsi, gills or stomach? A quantitative morphological study.
    da Cruz AL; Fernandes MN
    Zoology (Jena); 2016 Dec; 119(6):526-533. PubMed ID: 27618705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning of respiration between the gills and air-breathing organ in response to aquatic hypoxia and exercise in the pacific tarpon, Megalops cyprinoides.
    Seymour RS; Christian K; Bennett MB; Baldwin J; Wells RM; Baudinette RV
    Physiol Biochem Zool; 2004; 77(5):760-7. PubMed ID: 15547794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiration during chronic hypoxia and hyperoxia in larval and adult bullfrogs (Rana catesbeiana). I. Morphological responses of lungs, skin and gills.
    Burggren W; Mwalukoma A
    J Exp Biol; 1983 Jul; 105():191-203. PubMed ID: 6604781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.