These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 24502932)

  • 21. Toward a better understanding of the impact of bioenergy use on mortality rate in EU28 region.
    Alsaleh M; Zubair AO; Abdul-Rahim AS
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29831-29844. PubMed ID: 33575938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioenergy and African transformation.
    Lynd LR; Sow M; Chimphango AF; Cortez LA; Brito Cruz CH; Elmissiry M; Laser M; Mayaki IA; Moraes MA; Nogueira LA; Wolfaardt GM; Woods J; van Zyl WH
    Biotechnol Biofuels; 2015; 8():18. PubMed ID: 25709714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental Association of Burning Agricultural Biomass in the Indus River Basin.
    Usmani M; Kondal A; Wang J; Jutla A
    Geohealth; 2020 Nov; 4(11):e2020GH000281. PubMed ID: 33163827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of sorghum introduction and its impacts on land use change-A case study on Lubelski region of Eastern Poland.
    Shu K; Kozak M; Fradj NB; Zylowski T; Rozakis S
    Glob Change Biol Bioenergy; 2020 Apr; 12(4):252-274. PubMed ID: 32362941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generating an agricultural risk map based on limited ecological information: A case study using Sicyos angulatus.
    Osawa T; Okawa S; Kurokawa S; Ando S
    Ambio; 2016 Dec; 45(8):895-903. PubMed ID: 27118183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal sites for agricultural and forest residues energy conversion plant using geographic information system.
    Ukoba MO; Diemuodeke EO; Briggs TA; Imran M; Ojapah MM; Owebor K; Nwachukwu C; Aminu MD; Okedu KE; Kalam A; Colak I
    Heliyon; 2023 Sep; 9(9):e19660. PubMed ID: 37809719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Social inclusion increases with time for zero-tillage wheat in the Eastern Indo-Gangetic Plains.
    Keil A; Mitra A; Srivastava AK; McDonald A
    World Dev; 2019 Nov; 123():104582. PubMed ID: 31680716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emerging frontiers in microbial-mediated utilization of crop residues for economically valuable biomaterials.
    Mitra D; Panneerselvam P; Mohapatra PKD; Pellegrini M; Selvakumar G
    Curr Res Microb Sci; 2024; 6():100225. PubMed ID: 38380107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multicriteria approach for biomass availability assessment and selection for energy production in Burkina Faso: A hybrid AHP-TOPSIS approach.
    Zoma F; Sawadogo M
    Heliyon; 2023 Oct; 9(10):e20999. PubMed ID: 37876442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis and evaluate of agricultural resources using data analytic methods.
    Tang M
    Math Biosci Eng; 2024 Jan; 21(1):627-649. PubMed ID: 38303437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CROPGRIDS: a global geo-referenced dataset of 173 crops.
    Tang FHM; Nguyen TH; Conchedda G; Casse L; Tubiello FN; Maggi F
    Sci Data; 2024 Apr; 11(1):413. PubMed ID: 38649341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam.
    Lasko K; Vadrevu K
    Environ Pollut; 2018 May; 236():795-806. PubMed ID: 29459334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A high-resolution emission inventory of air pollutants from primary crop residue burning over Northern India based on VIIRS thermal anomalies.
    Singh T; Biswal A; Mor S; Ravindra K; Singh V; Mor S
    Environ Pollut; 2020 Nov; 266(Pt 1):115132. PubMed ID: 32717556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of biomass burning on regional aerosol optical properties: A case study over northern India.
    Shaik DS; Kant Y; Mitra D; Singh A; Chandola HC; Sateesh M; Babu SS; Chauhan P
    J Environ Manage; 2019 Aug; 244():328-343. PubMed ID: 31129465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of bioenergy on biodiversity arising from land-use change and crop type.
    Núñez-Regueiro MM; Siddiqui SF; Fletcher RJ
    Conserv Biol; 2021 Feb; 35(1):77-87. PubMed ID: 31854480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crop residue burning in South Asia: A review of the scale, effect, and solutions with a focus on reducing reactive nitrogen losses.
    Lin M; Begho T
    J Environ Manage; 2022 Jul; 314():115104. PubMed ID: 35462257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains.
    Vadrevu K; Lasko K
    J Environ Manage; 2015 Jan; 148():10-20. PubMed ID: 24502932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India.
    Vadrevu KP; Ellicott E; Badarinath KV; Vermote E
    Environ Pollut; 2011 Jun; 159(6):1560-9. PubMed ID: 21444135
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.