These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24502932)

  • 61. Appraising the availability of biomass residues in India and their bioenergy potential.
    Deep Singh A; Gajera B; Sarma AK
    Waste Manag; 2022 Oct; 152():38-47. PubMed ID: 35973326
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Influence of open vegetation fires on black carbon and ozone variability in the southern Himalayas (NCO-P, 5079 m a.s.l.).
    Putero D; Landi TC; Cristofanelli P; Marinoni A; Laj P; Duchi R; Calzolari F; Verza GP; Bonasoni P
    Environ Pollut; 2014 Jan; 184():597-604. PubMed ID: 24212180
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Spatial distribution of forest fires and controlling factors in Andhra Pradesh, India using SPOT satellite datasets.
    Vadrevu KP; Eaturu A; Badarinath KV
    Environ Monit Assess; 2006 Dec; 123(1-3):75-96. PubMed ID: 17054011
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Net energy of cellulosic ethanol from switchgrass.
    Schmer MR; Vogel KP; Mitchell RB; Perrin RK
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):464-9. PubMed ID: 18180449
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spatial distribution of pollutant emissions from crop residue burning in the Punjab and Sindh provinces of Pakistan: uncertainties and challenges.
    Irfan M; Riaz M; Arif MS; Shahzad SM; Hussain S; Akhtar MJ; van den Berg L; Abbas F
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16475-91. PubMed ID: 26396020
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A spatio-temporal analysis of fire recurrence and extent for semi-arid savanna ecosystems in Southern Africa using moderate-resolution satellite imagery.
    Pricope NG; Binford MW
    J Environ Manage; 2012 Jun; 100():72-85. PubMed ID: 22366360
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Energy potential of agricultural residues generated in Mexico and their use for butanol and electricity production under a biorefinery configuration.
    Molina-Guerrero CE; Sanchez A; Vázquez-Núñez E
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28607-28622. PubMed ID: 32285389
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optical properties of dust and crop burning emissions over India using ground and satellite data.
    Jing F; Singh RP
    Sci Total Environ; 2020 May; 718():134476. PubMed ID: 31843314
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India.
    Singh RJ; Meena RL; Sharma NK; Kumar S; Kumar K; Kumar D
    Environ Monit Assess; 2016 Feb; 188(2):79. PubMed ID: 26739009
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.
    Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL
    Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Estimation of root zone soil moisture using passive microwave remote sensing: A case study for rice and wheat crops for three states in the Indo-Gangetic basin.
    Sure A; Dikshit O
    J Environ Manage; 2019 Mar; 234():75-89. PubMed ID: 30616191
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bioenergy potential of the United States constrained by satellite observations of existing productivity.
    Smith WK; Cleveland CC; Reed SC; Miller NL; Running SW
    Environ Sci Technol; 2012 Mar; 46(6):3536-44. PubMed ID: 22321165
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A coupled framework for estimating pollutant emissions from open burning of specific crop residue: A case study for wheat.
    Zhou Y; Xia X; Lang J; Zhao B; Chen D; Mao S; Zhang Y; Liu J; Li J
    Sci Total Environ; 2022 Oct; 844():156731. PubMed ID: 35772556
    [TBL] [Abstract][Full Text] [Related]  

  • 74. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Global bioenergy potential from high-lignin agricultural residue.
    Mendu V; Shearin T; Campbell JE; Stork J; Jae J; Crocker M; Huber G; DeBolt S
    Proc Natl Acad Sci U S A; 2012 Mar; 109(10):4014-9. PubMed ID: 22355123
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Forest fire division by using MODIS data based on the temporal-spatial variation law].
    He C; He C; Gong YX; Zhang SY; He TF; Chen F; Sun Y; Feng ZK
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Sep; 33(9):2472-7. PubMed ID: 24369655
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The global potential of bioenergy on abandoned agriculture lands.
    Campbell JE; Lobell DB; Genova RC; Field CB
    Environ Sci Technol; 2008 Aug; 42(15):5791-4. PubMed ID: 18754510
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Religious Affiliation Modulates Weekly Cycles of Cropland Burning in Sub-Saharan Africa.
    Pereira JM; Oom D; Pereira P; Turkman AA; Turkman KF
    PLoS One; 2015; 10(9):e0139189. PubMed ID: 26418002
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania.
    Tarimo B; Dick ØB; Gobakken T; Totland Ø
    Carbon Balance Manag; 2015 Dec; 10():18. PubMed ID: 26246851
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A global yield dataset for major lignocellulosic bioenergy crops based on field measurements.
    Li W; Ciais P; Makowski D; Peng S
    Sci Data; 2018 Aug; 5():180169. PubMed ID: 30129935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.