These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 24502945)
1. A functional fragment of Tau forms fibers without the need for an intermolecular cysteine bridge. Huvent I; Kamah A; Cantrelle FX; Barois N; Slomianny C; Smet-Nocca C; Landrieu I; Lippens G Biochem Biophys Res Commun; 2014 Mar; 445(2):299-303. PubMed ID: 24502945 [TBL] [Abstract][Full Text] [Related]
2. Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy. Sibille N; Sillen A; Leroy A; Wieruszeski JM; Mulloy B; Landrieu I; Lippens G Biochemistry; 2006 Oct; 45(41):12560-72. PubMed ID: 17029411 [TBL] [Abstract][Full Text] [Related]
3. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation. Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680 [TBL] [Abstract][Full Text] [Related]
4. Regions of tau implicated in the paired helical fragment core as defined by NMR. Sillen A; Leroy A; Wieruszeski JM; Loyens A; Beauvillain JC; Buée L; Landrieu I; Lippens G Chembiochem; 2005 Oct; 6(10):1849-56. PubMed ID: 16196016 [TBL] [Abstract][Full Text] [Related]
5. Aggregation Kinetics and Filament Structure of a Tau Fragment Are Influenced by the Sulfation Pattern of the Cofactor Heparin. Townsend D; Fullwood NJ; Yates EA; Middleton DA Biochemistry; 2020 Oct; 59(41):4003-4014. PubMed ID: 32954725 [TBL] [Abstract][Full Text] [Related]
6. Tau paired helical filaments from Alzheimer's disease brain and assembled in vitro are based on beta-structure in the core domain. Barghorn S; Davies P; Mandelkow E Biochemistry; 2004 Feb; 43(6):1694-703. PubMed ID: 14769047 [TBL] [Abstract][Full Text] [Related]
7. A complex mechanism for inducer mediated tau polymerization. Carlson SW; Branden M; Voss K; Sun Q; Rankin CA; Gamblin TC Biochemistry; 2007 Jul; 46(30):8838-49. PubMed ID: 17608454 [TBL] [Abstract][Full Text] [Related]
8. The core of tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis. von Bergen M; Barghorn S; Müller SA; Pickhardt M; Biernat J; Mandelkow EM; Davies P; Aebi U; Mandelkow E Biochemistry; 2006 May; 45(20):6446-57. PubMed ID: 16700555 [TBL] [Abstract][Full Text] [Related]
9. Evidence for an intermediate in tau filament formation. Chirita CN; Kuret J Biochemistry; 2004 Feb; 43(6):1704-14. PubMed ID: 14769048 [TBL] [Abstract][Full Text] [Related]
10. NMR investigation of the interaction between the neuronal protein tau and the microtubules. Sillen A; Barbier P; Landrieu I; Lefebvre S; Wieruszeski JM; Leroy A; Peyrot V; Lippens G Biochemistry; 2007 Mar; 46(11):3055-64. PubMed ID: 17311412 [TBL] [Abstract][Full Text] [Related]
11. Nuclear magnetic resonance analysis of the acetylation pattern of the neuronal Tau protein. Kamah A; Huvent I; Cantrelle FX; Qi H; Lippens G; Landrieu I; Smet-Nocca C Biochemistry; 2014 May; 53(18):3020-32. PubMed ID: 24708343 [TBL] [Abstract][Full Text] [Related]
12. Interplay between I308 and Y310 residues in the third repeat of microtubule-binding domain is essential for tau filament formation. Naruto K; Minoura K; Okuda R; Taniguchi T; In Y; Ishida T; Tomoo K FEBS Lett; 2010 Oct; 584(19):4233-6. PubMed ID: 20837015 [TBL] [Abstract][Full Text] [Related]
13. Nuclear magnetic resonance spectroscopy characterization of interaction of Tau with DNA and its regulation by phosphorylation. Qi H; Cantrelle FX; Benhelli-Mokrani H; Smet-Nocca C; Buée L; Lippens G; Bonnefoy E; Galas MC; Landrieu I Biochemistry; 2015 Feb; 54(7):1525-33. PubMed ID: 25623359 [TBL] [Abstract][Full Text] [Related]
14. C-H ... π interplay between Ile308 and Tyr310 residues in the third repeat of microtubule binding domain is indispensable for self-assembly of three- and four-repeat tau. Sogawa K; Okuda R; In Y; Ishida T; Taniguchi T; Minoura K; Tomoo K J Biochem; 2012 Sep; 152(3):221-9. PubMed ID: 22659094 [TBL] [Abstract][Full Text] [Related]
15. Conformational transition state is responsible for assembly of microtubule-binding domain of tau protein. Hiraoka S; Yao TM; Minoura K; Tomoo K; Sumida M; Taniguchi T; Ishida T Biochem Biophys Res Commun; 2004 Mar; 315(3):659-63. PubMed ID: 14975751 [TBL] [Abstract][Full Text] [Related]
16. The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Jeganathan S; von Bergen M; Mandelkow EM; Mandelkow E Biochemistry; 2008 Oct; 47(40):10526-39. PubMed ID: 18783251 [TBL] [Abstract][Full Text] [Related]
17. Role of cysteine-291 and cysteine-322 in the polymerization of human tau into Alzheimer-like filaments. Bhattacharya K; Rank KB; Evans DB; Sharma SK Biochem Biophys Res Commun; 2001 Jul; 285(1):20-6. PubMed ID: 11437366 [TBL] [Abstract][Full Text] [Related]
18. Identification of the Tau phosphorylation pattern that drives its aggregation. Despres C; Byrne C; Qi H; Cantrelle FX; Huvent I; Chambraud B; Baulieu EE; Jacquot Y; Landrieu I; Lippens G; Smet-Nocca C Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9080-9085. PubMed ID: 28784767 [TBL] [Abstract][Full Text] [Related]
19. Assembly of two distinct dimers and higher-order oligomers from full-length tau. Sahara N; Maeda S; Murayama M; Suzuki T; Dohmae N; Yen SH; Takashima A Eur J Neurosci; 2007 May; 25(10):3020-9. PubMed ID: 17561815 [TBL] [Abstract][Full Text] [Related]
20. Protein anatomy: C-tail region of human tau protein as a crucial structural element in Alzheimer's paired helical filament formation in vitro. Yanagawa H; Chung SH; Ogawa Y; Sato K; Shibata-Seki T; Masai J; Ishiguro K Biochemistry; 1998 Feb; 37(7):1979-88. PubMed ID: 9485325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]