These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24503048)

  • 1. Effect of tissue properties, shape and orientation of microcalcifications on vulnerable cap stability using different hyperelastic constitutive models.
    Cardoso L; Kelly-Arnold A; Maldonado N; Laudier D; Weinbaum S
    J Biomech; 2014 Mar; 47(4):870-7. PubMed ID: 24503048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture.
    Maldonado N; Kelly-Arnold A; Vengrenyuk Y; Laudier D; Fallon JT; Virmani R; Cardoso L; Weinbaum S
    Am J Physiol Heart Circ Physiol; 2012 Sep; 303(5):H619-28. PubMed ID: 22777419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size and proximity of micro-scale hard-inclusions increase the risk of rupture in fibroatheroma-like laboratory models.
    Corti A; Khalil D; De Paolis A; Cardoso L
    J Mech Behav Biomed Mater; 2023 May; 141():105749. PubMed ID: 36924613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging and analysis of microcalcifications and lipid/necrotic core calcification in fibrous cap atheroma.
    Maldonado N; Kelly-Arnold A; Laudier D; Weinbaum S; Cardoso L
    Int J Cardiovasc Imaging; 2015 Jun; 31(5):1079-87. PubMed ID: 25837377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries.
    Kelly-Arnold A; Maldonado N; Laudier D; Aikawa E; Cardoso L; Weinbaum S
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10741-6. PubMed ID: 23733926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding.
    Maldonado N; Kelly-Arnold A; Cardoso L; Weinbaum S
    J Biomech; 2013 Jan; 46(2):396-401. PubMed ID: 23218838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcalcifications, Their Genesis, Growth, and Biomechanical Stability in Fibrous Cap Rupture.
    Cardoso L; Weinbaum S
    Adv Exp Med Biol; 2018; 1097():129-155. PubMed ID: 30315543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does microcalcification increase the risk of rupture?
    Cilla M; Monterde D; Peña E; Martínez MÁ
    Proc Inst Mech Eng H; 2013 May; 227(5):588-99. PubMed ID: 23637269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses.
    Cilla M; Peña E; Martínez MA
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1001-13. PubMed ID: 22227796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of plaque morphology, material composition and microcalcifications on the risk of cap rupture: A structural analysis of vulnerable atherosclerotic plaques.
    Corti A; De Paolis A; Grossman P; Dinh PA; Aikawa E; Weinbaum S; Cardoso L
    Front Cardiovasc Med; 2022; 9():1019917. PubMed ID: 36277774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-CT fluid-structure interaction study.
    Rambhia SH; Liang X; Xenos M; Alemu Y; Maldonado N; Kelly A; Chakraborti S; Weinbaum S; Cardoso L; Einav S; Bluestein D
    Ann Biomed Eng; 2012 Jul; 40(7):1443-54. PubMed ID: 22234864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of intima stiffness and plaque morphology on peak cap stress.
    Akyildiz AC; Speelman L; van Brummelen H; Gutiérrez MA; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ
    Biomed Eng Online; 2011 Apr; 10():25. PubMed ID: 21477277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid-structure interaction studies.
    Liang X; Xenos M; Alemu Y; Rambhia SH; Lavi I; Kornowski R; Gruberg L; Fuchs S; Einav S; Bluestein D
    Coron Artery Dis; 2013 Mar; 24(2):75-87. PubMed ID: 23363983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stratification of risk in thin cap fibroatheromas using peak plaque stress estimates from idealized finite element models.
    Dolla WJ; House JA; Marso SP
    Med Eng Phys; 2012 Nov; 34(9):1330-8. PubMed ID: 22342558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries.
    Akyildiz AC; Speelman L; Nieuwstadt HA; van Brummelen H; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ
    Comput Methods Biomech Biomed Engin; 2016; 19(7):771-9. PubMed ID: 26237279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study to indicate the vulnerability of plaques using an idealized 2D plaque model based on plaque classification in the human coronary artery.
    Lee W; Choi GJ; Cho SW
    Med Biol Eng Comput; 2017 Aug; 55(8):1379-1387. PubMed ID: 27943103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changing views of the biomechanics of vulnerable plaque rupture: a review.
    Cardoso L; Weinbaum S
    Ann Biomed Eng; 2014 Feb; 42(2):415-31. PubMed ID: 23842694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear multiscale analysis of coronary atherosclerotic vulnerable plaque artery: fluid-structural modeling with micromechanics.
    Massarwa E; Aronis Z; Eliasy R; Einav S; Haj-Ali R
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1889-1901. PubMed ID: 34191188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Stress Profiling of Coronary Atherosclerosis: Identifying a Multifactorial Metric to Evaluate Plaque Rupture Risk.
    Doradla P; Otsuka K; Nadkarni A; Villiger M; Karanasos A; Zandvoort LJCV; Dijkstra J; Zijlstra F; Soest GV; Daemen J; Regar E; Bouma BE; Nadkarni SK
    JACC Cardiovasc Imaging; 2020 Mar; 13(3):804-816. PubMed ID: 31005542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of axial image resolution on atherosclerotic plaque stress computations.
    Nieuwstadt HA; Akyildiz AC; Speelman L; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ
    J Biomech; 2013 Feb; 46(4):689-95. PubMed ID: 23261242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.