BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24503083)

  • 1. The structure of Sinorhizobium meliloti phage ΦM12, which has a novel T=19l triangulation number and is the founder of a new group of T4-superfamily phages.
    Stroupe ME; Brewer TE; Sousa DR; Jones KM
    Virology; 2014 Feb; 450-451():205-12. PubMed ID: 24503083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid.
    Johnson MC; Tatum KB; Lynn JS; Brewer TE; Lu S; Washburn BK; Stroupe ME; Jones KM
    J Virol; 2015 Nov; 89(21):10945-58. PubMed ID: 26311868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages.
    Brewer TE; Stroupe ME; Jones KM
    Virology; 2014 Feb; 450-451():84-97. PubMed ID: 24503070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, proteome and genome of Sinorhizobium meliloti phage ΦM5: A virus with LUZ24-like morphology and a highly mosaic genome.
    Johnson MC; Sena-Velez M; Washburn BK; Platt GN; Lu S; Brewer TE; Lynn JS; Stroupe ME; Jones KM
    J Struct Biol; 2017 Dec; 200(3):343-359. PubMed ID: 28842338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships.
    Effantin G; Boulanger P; Neumann E; Letellier L; Conway JF
    J Mol Biol; 2006 Sep; 361(5):993-1002. PubMed ID: 16876823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses.
    Chen Z; Sun L; Zhang Z; Fokine A; Padilla-Sanchez V; Hanein D; Jiang W; Rossmann MG; Rao VB
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):E8184-E8193. PubMed ID: 28893988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Isolation and phylogenetic analysis of major capsid gene (g23) of bacteriophages infecting Sinorhizobium meliloti].
    Yu H; Liu J; Fan G; Wang G
    Wei Sheng Wu Xue Bao; 2017 Feb; 57(2):270-80. PubMed ID: 29750490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional cryo-electron microscopy structure of the bacteriophage phiKZ head.
    Fokine A; Kostyuchenko VA; Efimov AV; Kurochkina LP; Sykilinda NN; Robben J; Volckaert G; Hoenger A; Chipman PR; Battisti AJ; Rossmann MG; Mesyanzhinov VV
    J Mol Biol; 2005 Sep; 352(1):117-24. PubMed ID: 16081102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly discriminatory binding of capsid-cementing proteins in bacteriophage L.
    Tang L; Gilcrease EB; Casjens SR; Johnson JE
    Structure; 2006 May; 14(5):837-45. PubMed ID: 16698545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The capsid of the T4 phage superfamily: the evolution, diversity, and structure of some of the most prevalent proteins in the biosphere.
    Comeau AM; Krisch HM
    Mol Biol Evol; 2008 Jul; 25(7):1321-32. PubMed ID: 18391067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and assembly of bacteriophage T4 head.
    Rao VB; Black LW
    Virol J; 2010 Dec; 7():356. PubMed ID: 21129201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular architecture of bacteriophage T4 capsid: vertex structure and bimodal binding of the stabilizing accessory protein, Soc.
    Iwasaki K; Trus BL; Wingfield PT; Cheng N; Campusano G; Rao VB; Steven AC
    Virology; 2000 Jun; 271(2):321-33. PubMed ID: 10860886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly.
    Plevka P; Kazaks A; Voronkova T; Kotelovica S; Dishlers A; Liljas L; Tars K
    J Mol Biol; 2009 Aug; 391(3):635-47. PubMed ID: 19559027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages.
    Qin L; Fokine A; O'Donnell E; Rao VB; Rossmann MG
    J Mol Biol; 2010 Jan; 395(4):728-41. PubMed ID: 19835886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The three-dimensional structure of genomic RNA in bacteriophage MS2: implications for assembly.
    Toropova K; Basnak G; Twarock R; Stockley PG; Ranson NA
    J Mol Biol; 2008 Jan; 375(3):824-36. PubMed ID: 18048058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of isometric capsids of bacteriophage T4.
    Olson NH; Gingery M; Eiserling FA; Baker TS
    Virology; 2001 Jan; 279(2):385-91. PubMed ID: 11162794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudoatomic structure of phi29.
    Morais MC; Choi KH; Koti JS; Chipman PR; Anderson DL; Rossmann MG
    Mol Cell; 2005 Apr; 18(2):149-59. PubMed ID: 15837419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks.
    Parent KN; Khayat R; Tu LH; Suhanovsky MM; Cortines JR; Teschke CM; Johnson JE; Baker TS
    Structure; 2010 Mar; 18(3):390-401. PubMed ID: 20223221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tripartite capsid gene of Salmonella phage Gifsy-2 yields a capsid assembly pathway engaging features from HK97 and lambda.
    Effantin G; Figueroa-Bossi N; Schoehn G; Bossi L; Conway JF
    Virology; 2010 Jul; 402(2):355-65. PubMed ID: 20427067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of subunit hinges and molecular "switches" in the control of viral capsid polymorphism.
    Tang J; Johnson JM; Dryden KA; Young MJ; Zlotnick A; Johnson JE
    J Struct Biol; 2006 Apr; 154(1):59-67. PubMed ID: 16495083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.