BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 24503127)

  • 1. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients.
    Gao Q; Zhao YJ; Wang XY; Guo WJ; Gao S; Wei L; Shi JY; Shi GM; Wang ZC; Zhang YN; Shi YH; Ding J; Ding ZB; Ke AW; Dai Z; Wu FZ; Wang H; Qiu ZP; Chen ZA; Zhang ZF; Qiu SJ; Zhou J; He XH; Fan J
    Gastroenterology; 2014 May; 146(5):1397-407. PubMed ID: 24503127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PTPN3 mutations and HBV may exert synergistic effects in the origin of the intrahepatic cholangiocarcinoma.
    Cardinale V; Alvaro D
    Gastroenterology; 2014 Sep; 147(3):719-20. PubMed ID: 25075940
    [No Abstract]   [Full Text] [Related]  

  • 3. Tumor-derived trypsin enhances proliferation of intrahepatic cholangiocarcinoma cells by activating protease-activated receptor-2.
    Nakanuma S; Tajima H; Okamoto K; Hayashi H; Nakagawara H; Onishi I; Takamura H; Kitagawa H; Fushida S; Tani T; Fujimura T; Kayahara M; Ohta T; Wakayama T; Iseki S; Harada S
    Int J Oncol; 2010 Apr; 36(4):793-800. PubMed ID: 20198321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsomal prostaglandin E synthase-1 inhibits PTEN and promotes experimental cholangiocarcinogenesis and tumor progression.
    Lu D; Han C; Wu T
    Gastroenterology; 2011 Jun; 140(7):2084-94. PubMed ID: 21354147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Notch1 is overexpressed in human intrahepatic cholangiocarcinoma and is associated with its proliferation, invasiveness and sensitivity to 5-fluorouracil in vitro.
    Wu WR; Zhang R; Shi XD; Zhu MS; Xu LB; Zeng H; Liu C
    Oncol Rep; 2014 Jun; 31(6):2515-24. PubMed ID: 24700253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors.
    Andersen JB; Spee B; Blechacz BR; Avital I; Komuta M; Barbour A; Conner EA; Gillen MC; Roskams T; Roberts LR; Factor VM; Thorgeirsson SS
    Gastroenterology; 2012 Apr; 142(4):1021-1031.e15. PubMed ID: 22178589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma.
    Dong LQ; Shi Y; Ma LJ; Yang LX; Wang XY; Zhang S; Wang ZC; Duan M; Zhang Z; Liu LZ; Zheng BH; Ding ZB; Ke AW; Gao DM; Yuan K; Zhou J; Fan J; Xi R; Gao Q
    J Hepatol; 2018 Jul; 69(1):89-98. PubMed ID: 29551704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Value of glycogen synthase 2 in intrahepatic cholangiocarcinoma prognosis assessment and its influence on the activity of cancer cells.
    A S; Wu H; Wang X; Wang X; Yang J; Xia L; Xia Y
    Bioengineered; 2021 Dec; 12(2):12167-12178. PubMed ID: 34783271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High expression of protein tyrosine kinase 7 significantly associates with invasiveness and poor prognosis in intrahepatic cholangiocarcinoma.
    Jin J; Ryu HS; Lee KB; Jang JJ
    PLoS One; 2014; 9(2):e90247. PubMed ID: 24587299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ring finger protein 43 expression is associated with genetic alteration status and poor prognosis among patients with intrahepatic cholangiocarcinoma.
    Talabnin C; Janthavon P; Thongsom S; Suginta W; Talabnin K; Wongkham S
    Hum Pathol; 2016 Jun; 52():47-54. PubMed ID: 26980022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PTPN3 acts as a tumor suppressor and boosts TGF-β signaling independent of its phosphatase activity.
    Yuan B; Liu J; Cao J; Yu Y; Zhang H; Wang F; Zhu Y; Xiao M; Liu S; Ye Y; Ma L; Xu D; Xu N; Li Y; Zhao B; Xu P; Jin J; Xu J; Chen X; Shen L; Lin X; Feng XH
    EMBO J; 2019 Jul; 38(14):e99945. PubMed ID: 31304624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes.
    Sia D; Hoshida Y; Villanueva A; Roayaie S; Ferrer J; Tabak B; Peix J; Sole M; Tovar V; Alsinet C; Cornella H; Klotzle B; Fan JB; Cotsoglou C; Thung SN; Fuster J; Waxman S; Garcia-Valdecasas JC; Bruix J; Schwartz ME; Beroukhim R; Mazzaferro V; Llovet JM
    Gastroenterology; 2013 Apr; 144(4):829-40. PubMed ID: 23295441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oncogenic potential of IDH1R132C mutant in cholangiocarcinoma development in mice.
    Ding N; Che L; Li XL; Liu Y; Jiang LJ; Fan B; Tao JY; Chen X; Ji JF
    World J Gastroenterol; 2016 Feb; 22(6):2071-80. PubMed ID: 26877611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aldolase A Enhances Intrahepatic Cholangiocarcinoma Proliferation and Invasion through Promoting Glycolysis.
    Li X; Yu C; Luo Y; Lin J; Wang F; Sun X; Gao Y; Tan W; Xia Q; Kong X
    Int J Biol Sci; 2021; 17(7):1782-1794. PubMed ID: 33994862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying therapeutic targets.
    Zhu AX; Borger DR; Kim Y; Cosgrove D; Ejaz A; Alexandrescu S; Groeschl RT; Deshpande V; Lindberg JM; Ferrone C; Sempoux C; Yau T; Poon R; Popescu I; Bauer TW; Gamblin TC; Gigot JF; Anders RA; Pawlik TM
    Ann Surg Oncol; 2014 Nov; 21(12):3827-34. PubMed ID: 24889489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oncogenic potential of cyclin kinase subunit-2 in cholangiocarcinoma.
    Shen DY; Zhan YH; Wang QM; Rui G; Zhang ZM
    Liver Int; 2013 Jan; 33(1):137-48. PubMed ID: 23121546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics analysis identified TPI1 as a novel biomarker for predicting recurrence of intrahepatic cholangiocarcinoma.
    Yu WL; Yu G; Dong H; Chen K; Xie J; Yu H; Ji Y; Yang GS; Li AJ; Cong WM; Jin GZ
    J Gastroenterol; 2020 Dec; 55(12):1171-1182. PubMed ID: 33089343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autocrine parathyroid hormone-like hormone promotes intrahepatic cholangiocarcinoma cell proliferation via increased ERK/JNK-ATF2-cyclinD1 signaling.
    Tang J; Liao Y; He S; Shi J; Peng L; Xu X; Xie F; Diao N; Huang J; Xie Q; Lin C; Luo X; Liao K; Ma J; Li J; Zhou D; Li Z; Xu J; Zhong C; Wang G; Bai L
    J Transl Med; 2017 Nov; 15(1):238. PubMed ID: 29178939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-exome mutational and transcriptional landscapes of combined hepatocellular cholangiocarcinoma and intrahepatic cholangiocarcinoma reveal molecular diversity.
    Liu ZH; Lian BF; Dong QZ; Sun H; Wei JW; Sheng YY; Li W; Li YX; Xie L; Liu L; Qin LX
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2360-2368. PubMed ID: 29408647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Downregulated Expression of Tropomyosin 1 in Intrahepatic Cholangiocarcinoma: A Predictor of Recurrence and Prognosis.
    Chen Y; Hong Z; Lu S; Zhang N; Rong G; Chang X; Liu Z; Bai W; Dong Z; Gao X; Zeng Z; Lu Y
    Med Sci Monit; 2018 Nov; 24():7875-7882. PubMed ID: 30390420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.