These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 24503139)

  • 1. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.
    Delaunois F; Tosar F; Vitry V
    Bioelectrochemistry; 2014 Jun; 97():110-9. PubMed ID: 24503139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.
    Minnoş B; Ilhan-Sungur E; Çotuk A; Güngör ND; Cansever N
    Biofouling; 2013; 29(3):223-35. PubMed ID: 23439037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbially influenced corrosion of galvanized steel pipes in aerobic water systems.
    Bolton N; Critchley M; Fabien R; Cromar N; Fallowfield H
    J Appl Microbiol; 2010 Jul; 109(1):239-47. PubMed ID: 20070443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of W-TiO2 composite to control microbiologically influenced corrosion on galvanized steel.
    Basheer R; Ganga G; Chandran RK; Nair GM; Nair MB; Shibli SM
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5615-25. PubMed ID: 22983597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity.
    Schütz MK; Moreira R; Bildstein O; Lartigue JE; Schlegel ML; Tribollet B; Vivier V; Libert M
    Bioelectrochemistry; 2014 Jun; 97():61-8. PubMed ID: 24064199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations.
    Moreira R; Schütz MK; Libert M; Tribollet B; Vivier V
    Bioelectrochemistry; 2014 Jun; 97():69-75. PubMed ID: 24177135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.
    Ilhan-Sungur E; Ozuolmez D; Çotuk A; Cansever N; Muyzer G
    Anaerobe; 2017 Feb; 43():27-34. PubMed ID: 27871998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.
    Cote C; Rosas O; Sztyler M; Doma J; Beech I; Basseguy R
    Bioelectrochemistry; 2014 Jun; 97():97-109. PubMed ID: 24355513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment.
    Wikieł AJ; Datsenko I; Vera M; Sand W
    Bioelectrochemistry; 2014 Jun; 97():52-60. PubMed ID: 24238898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of biofilm in the maturation process on the corrosion behavior of galvanized steel: long-term evaluation by EIS.
    Unsal T; Cansever N; Ilhan-Sungur E
    World J Microbiol Biotechnol; 2019 Jan; 35(2):22. PubMed ID: 30656423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.
    Zuo R; Ornek D; Syrett BC; Green RM; Hsu CH; Mansfeld FB; Wood TK
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):275-83. PubMed ID: 12898064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism.
    Dall'agnol LT; Cordas CM; Moura JJ
    Bioelectrochemistry; 2014 Jun; 97():43-51. PubMed ID: 24238897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Analysis of different pipe corrosion by ESEM and bacteria identification by API in pilot distribution network].
    Wu Q; Zhao X; Yu Q; Li J
    Wei Sheng Yan Jiu; 2008 Jul; 37(4):405-8. PubMed ID: 18839520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A semi-continuous system for monitoring microbially influenced corrosion.
    Eid MM; Duncan KE; Tanner RS
    J Microbiol Methods; 2018 Jul; 150():55-60. PubMed ID: 29803719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The corrosion process caused by the activity of the anaerobic sporulated bacterium Clostridium celerecrescens on API XL 52 steel.
    Ramos Monroy OA; Ruiz Ordaz N; Hernández Gayosso MJ; Juárez Ramírez C; Galíndez Mayer J
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29991-30002. PubMed ID: 31414386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual-electrochemical cell to study the biocorrosion of stainless steel.
    Lopes FA; Perrin S; Féron D
    Water Sci Technol; 2007; 55(8-9):499-504. PubMed ID: 17547022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of crevice morphology on SRB activity and steel corrosion under marine foulers.
    Permeh S; Lau K; Duncan M
    Bioelectrochemistry; 2021 Dec; 142():107922. PubMed ID: 34392136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gemini surfactant as multifunctional corrosion and biocorrosion inhibitors for mild steel.
    Pakiet M; Kowalczyk I; Leiva Garcia R; Moorcroft R; Nichol T; Smith T; Akid R; Brycki B
    Bioelectrochemistry; 2019 Aug; 128():252-262. PubMed ID: 31048108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater.
    Zhang T; Wang J; Li G; Liu H
    Bioelectrochemistry; 2021 Dec; 142():107933. PubMed ID: 34560601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.