These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24503458)

  • 21. Effects of fluoxetine on fish: What do we know and where should we focus our efforts in the future?
    Correia D; Domingues I; Faria M; Oliveira M
    Sci Total Environ; 2023 Jan; 857(Pt 2):159486. PubMed ID: 36257440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems.
    Mole RA; Brooks BW
    Environ Pollut; 2019 Jul; 250():1019-1031. PubMed ID: 31085468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective serotonin reuptake inhibitors and β-blocker transformation products may not pose a significant risk of toxicity to aquatic organisms in wastewater effluent-dominated receiving waters.
    Brown AK; Challis JK; Wong CS; Hanson ML
    Integr Environ Assess Manag; 2015 Oct; 11(4):618-39. PubMed ID: 25820351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of pH-dependent aquatic toxicity of ionizable pharmaceuticals on risk assessments over environmental pH ranges.
    Boström ML; Berglund O
    Water Res; 2015 Apr; 72():154-61. PubMed ID: 25262444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leveraging mammalian pharmaceutical toxicology and pharmacology data to predict chronic fish responses to pharmaceuticals.
    Berninger JP; Brooks BW
    Toxicol Lett; 2010 Mar; 193(1):69-78. PubMed ID: 20025941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows.
    Schultz MM; Painter MM; Bartell SE; Logue A; Furlong ET; Werner SL; Schoenfuss HL
    Aquat Toxicol; 2011 Jul; 104(1-2):38-47. PubMed ID: 21536011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecotoxicology of human pharmaceuticals.
    Fent K; Weston AA; Caminada D
    Aquat Toxicol; 2006 Feb; 76(2):122-59. PubMed ID: 16257063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An updated weight of evidence approach to the aquatic hazard assessment of Bisphenol A and the derivation a new predicted no effect concentration (Pnec) using a non-parametric methodology.
    Wright-Walters M; Volz C; Talbott E; Davis D
    Sci Total Environ; 2011 Jan; 409(4):676-85. PubMed ID: 21130487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro inhibition of cytochrome P450-mediated reactions by gemfibrozil, erythromycin, ciprofloxacin and fluoxetine in fish liver microsomes.
    Smith EM; Iftikar FI; Higgins S; Irshad A; Jandoc R; Lee M; Wilson JY
    Aquat Toxicol; 2012 Mar; 109():259-66. PubMed ID: 22000335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prioritization of pharmaceuticals for potential environmental hazard through leveraging a large-scale mammalian pharmacological dataset.
    Berninger JP; LaLone CA; Villeneuve DL; Ankley GT
    Environ Toxicol Chem; 2016 Apr; 35(4):1007-20. PubMed ID: 25772004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Norfluoxetine induces spawning and parturition in estuarine and freshwater bivalves.
    Fong PP; Molnar N
    Bull Environ Contam Toxicol; 2008 Dec; 81(6):535-8. PubMed ID: 18787749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of waterborne exposure to the antidepressant fluoxetine on swimming, shoaling and anxiety behaviours of the mosquitofish Gambusia holbrooki.
    Meijide FJ; Da Cuña RH; Prieto JP; Dorelle LS; Babay PA; Lo Nostro FL
    Ecotoxicol Environ Saf; 2018 Nov; 163():646-655. PubMed ID: 30096666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global scanning of antihistamines in the environment: Analysis of occurrence and hazards in aquatic systems.
    Kristofco LA; Brooks BW
    Sci Total Environ; 2017 Aug; 592():477-487. PubMed ID: 28325591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts.
    Guéguen M; Amiard JC; Arnich N; Badot PM; Claisse D; Guérin T; Vernoux JP
    Rev Environ Contam Toxicol; 2011; 213():55-111. PubMed ID: 21541848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mode of action (MOA) approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis.
    Franzellitti S; Buratti S; Valbonesi P; Fabbri E
    Aquat Toxicol; 2013 Sep; 140-141():249-56. PubMed ID: 23831970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Urbanization, environment and pharmaceuticals: advancing comparative physiology, pharmacology and toxicology.
    Brooks BW
    Conserv Physiol; 2018; 6(1):cox079. PubMed ID: 30364343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changing tides: Adaptive monitoring, assessment, and management of pharmaceutical hazards in the environment through time.
    Gaw S; Brooks BW
    Environ Toxicol Chem; 2016 Apr; 35(4):1037-42. PubMed ID: 26412644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.