These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24503699)

  • 1. Pore-size reduction protocol for SiN membrane nanopore using the thermal reflow in nanoimprinting for nanobio-based sensing.
    Lee DS; Song HW; Choi CG; Jung MY
    J Biomed Opt; 2014 May; 19(5):051211. PubMed ID: 24503699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfabrication of SiN membrane nanosieve using anisotropic reactive ion etching (ARIE) with an Ar/CF4 gas flow.
    Lee DS; Song HW; Chung KH; Jung MY; Yoon HC
    J Nanosci Nanotechnol; 2011 May; 11(5):4511-6. PubMed ID: 21780488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing.
    Wei R; Pedone D; Zürner A; Döblinger M; Rant U
    Small; 2010 Jul; 6(13):1406-14. PubMed ID: 20564484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The controlled fabrication of nanopores by focused electron-beam-induced etching.
    Yemini M; Hadad B; Liebes Y; Goldner A; Ashkenasy N
    Nanotechnology; 2009 Jun; 20(24):245302. PubMed ID: 19468165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of shape and material composition of solid-state nanopores.
    Wu MY; Smeets RM; Zandbergen M; Ziese U; Krapf D; Batson PE; Dekker NH; Dekker C; Zandbergen HW
    Nano Lett; 2009 Jan; 9(1):479-84. PubMed ID: 19143508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of nanopores in a 100-nm thick Si3N4 membrane.
    Chungt JH; Chen X; Zimney EJ; Ruoff RS
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2175-81. PubMed ID: 17025145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
    Schmidt T; Zhang M; Sychugov I; Roxhed N; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314001. PubMed ID: 26180043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules.
    Yanagi I; Akahori R; Takeda KI
    Sci Rep; 2019 Sep; 9(1):13143. PubMed ID: 31511597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography.
    Janssen XJ; Jonsson MP; Plesa C; Soni GV; Dekker C; Dekker NH
    Nanotechnology; 2012 Nov; 23(47):475302. PubMed ID: 23103750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling nanopore size, shape and stability.
    van den Hout M; Hall AR; Wu MY; Zandbergen HW; Dekker C; Dekker NH
    Nanotechnology; 2010 Mar; 21(11):115304. PubMed ID: 20173233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-noise silicon nitride nanopore device on a polymer substrate.
    Choi W; Jeon ES; Chun KY; Kim YR; Park KB; Kim KB; Han CS
    PLoS One; 2018; 13(7):e0200831. PubMed ID: 30028848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow DNA transport through nanopores in hafnium oxide membranes.
    Larkin J; Henley R; Bell DC; Cohen-Karni T; Rosenstein JK; Wanunu M
    ACS Nano; 2013 Nov; 7(11):10121-10128. PubMed ID: 24083444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Biomolecules Using Solid-State Nanopores Fabricated by Controlled Dielectric Breakdown.
    Cheng P; Zhao C; Pan Q; Xiong Z; Chen Q; Miao X; He Y
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically modified solid state nanopores for high throughput nanoparticle separation.
    Prabhu AS; Jubery TZ; Freedman KJ; Mulero R; Dutta P; Kim MJ
    J Phys Condens Matter; 2010 Nov; 22(45):454107. PubMed ID: 21339595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores.
    Ma J; Qiu Y; Yuan Z; Zhang Y; Sha J; Liu L; Sun L; Ni Z; Yi H; Li D; Chen Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022719. PubMed ID: 26382444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state nanopores and nanopore arrays optimized for optical detection.
    Sawafta F; Clancy B; Carlsen AT; Huber M; Hall AR
    Nanoscale; 2014 Jun; 6(12):6991-6. PubMed ID: 24838772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of Diffusion within Nanoarrays.
    Liu Y; Holzinger A; Knittel P; Poltorak L; Gamero-Quijano A; Rickard WD; Walcarius A; Herzog G; Kranz C; Arrigan DW
    Anal Chem; 2016 Jul; 88(13):6689-95. PubMed ID: 27264360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fabrication of high-aspect-ratio, size-tunable nanopore arrays by modified nanosphere lithography.
    Chen X; Wei X; Jiang K
    Nanotechnology; 2009 Oct; 20(42):425605. PubMed ID: 19779228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes.
    Sischka A; Galla L; Meyer AJ; Spiering A; Knust S; Mayer M; Hall AR; Beyer A; Reimann P; Gölzhäuser A; Anselmetti D
    Analyst; 2015 Jul; 140(14):4843-7. PubMed ID: 25768647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.