These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 24503709)

  • 1. Variation in deep brain stimulation electrode impedance over years following electrode implantation.
    Satzer D; Lanctin D; Eberly LE; Abosch A
    Stereotact Funct Neurosurg; 2014; 92(2):94-102. PubMed ID: 24503709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomic correlates of deep brain stimulation electrode impedance.
    Satzer D; Maurer EW; Lanctin D; Guan W; Abosch A
    J Neurol Neurosurg Psychiatry; 2015 Apr; 86(4):398-403. PubMed ID: 24935985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo impedance spectroscopy of deep brain stimulation electrodes.
    Lempka SF; Miocinovic S; Johnson MD; Vitek JL; McIntyre CC
    J Neural Eng; 2009 Aug; 6(4):046001. PubMed ID: 19494421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal impedance variability in patients with chronically implanted DBS devices.
    Cheung T; Nuño M; Hoffman M; Katz M; Kilbane C; Alterman R; Tagliati M
    Brain Stimul; 2013 Sep; 6(5):746-51. PubMed ID: 23619246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal Follow-up of Impedance Drift in Deep Brain Stimulation Cases.
    Wong J; Gunduz A; Shute J; Eisinger R; Cernera S; Ho KWD; Martinez-Ramirez D; Almeida L; Wilson CA; Okun MS; Hess CW
    Tremor Other Hyperkinet Mov (N Y); 2018; 8():542. PubMed ID: 29607241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain impedance variation of directional leads implanted in subthalamic nuclei of Parkinsonian patients.
    Eleopra R; Rinaldo S; Devigili G; Lettieri C; Mondani M; D'Auria S; Piacentino M; Pilleri M
    Clin Neurophysiol; 2019 Sep; 130(9):1562-1569. PubMed ID: 31301634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unstable impedance of a single electrode contact resulting in loss of DBS therapy-a case report.
    Allert N; Lindlau A; Quindt R; Reker P; Timmermann L; Barbe MT
    Acta Neurochir (Wien); 2018 Dec; 160(12):2485-2488. PubMed ID: 30120541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation-induced changes at the electrode-tissue interface and their influence on deep brain stimulation.
    Evers J; Sridhar K; Liegey J; Brady J; Jahns H; Lowery M
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35728575
    [No Abstract]   [Full Text] [Related]  

  • 11. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo.
    Wei XF; Grill WM
    J Neural Eng; 2009 Aug; 6(4):046008. PubMed ID: 19587394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation.
    Lempka SF; Johnson MD; Miocinovic S; Vitek JL; McIntyre CC
    Clin Neurophysiol; 2010 Dec; 121(12):2128-33. PubMed ID: 20493764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Active Electrode in the Living Brain: The Response of the Brain Parenchyma to Chronically Implanted Deep Brain Stimulation Electrodes.
    Evers J; Lowery M
    Oper Neurosurg (Hagerstown); 2021 Jan; 20(2):131-140. PubMed ID: 33074305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved electrode material for deep brain stimulation.
    Petrossians A; Whalen JJ; Weiland JD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1798-1801. PubMed ID: 28268677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Electrode Contacts for Clinically Effective Deep Brain Stimulation in Essential Tremor.
    Åström M; Samuelsson J; Roothans J; Fytagoridis A; Ryzhkov M; Nijlunsing R; Blomstedt P
    Stereotact Funct Neurosurg; 2018; 96(5):281-288. PubMed ID: 30269142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hardware complications in deep brain stimulation: electrode impedance and loss of clinical benefit.
    Guridi J; Rodriguez-Oroz MC; Alegre M; Obeso JA
    Parkinsonism Relat Disord; 2012 Jul; 18(6):765-9. PubMed ID: 22522071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal macrodynamics and microdynamics of the postoperative impedance at the tissue-electrode interface in deep brain stimulation patients.
    Lungu C; Malone P; Wu T; Ghosh P; McElroy B; Zaghloul K; Patterson T; Hallett M; Levine Z
    J Neurol Neurosurg Psychiatry; 2014 Jul; 85(7):816-9. PubMed ID: 24218525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface.
    McIntyre CC; Butson CR; Maks CB; Noecker AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():893-5. PubMed ID: 17946871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations.
    Horn A; Kühn AA
    Neuroimage; 2015 Feb; 107():127-135. PubMed ID: 25498389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Field Shaping for Deep Brain Stimulation With Thousands of Contacts in a Novel Electrode Geometry.
    Willsie AC; Dorval AD
    Neuromodulation; 2015 Oct; 18(7):542-50; discussion 550-1. PubMed ID: 26245306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.