These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2450374)

  • 1. Characterization of the drug receptors of the purified skeletal muscle calcium channel.
    Striessnig J; Glossmann H
    Prog Clin Biol Res; 1988; 252():35-40. PubMed ID: 2450374
    [No Abstract]   [Full Text] [Related]  

  • 2. Purified L-type calcium channels: only one single polypeptide (alpha 1-subunit) carries the drug receptor domains and is regulated by protein kinases.
    Glossmann H; Striessnig J; Hymel L; Schindler H
    Biomed Biochim Acta; 1987; 46(8-9):S351-6. PubMed ID: 2449181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular properties of voltage-sensitive calcium channels.
    Catterall WA; Curtis BM
    Soc Gen Physiol Ser; 1987; 41():201-13. PubMed ID: 2436311
    [No Abstract]   [Full Text] [Related]  

  • 4. Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel.
    Striessnig J; Knaus HG; Grabner M; Moosburger K; Seitz W; Lietz H; Glossmann H
    FEBS Lett; 1987 Feb; 212(2):247-53. PubMed ID: 2434359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of the purified receptor for calcium channel blockers.
    Sieber M; Nastainczyk W; Röhrkasten A; Hofmann F
    Biomed Biochim Acta; 1987; 46(8-9):S357-62. PubMed ID: 2829861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Intracellular calcium mobilization in skeletal muscle].
    Kirino Y
    Tanpakushitsu Kakusan Koso; 1988 Sep; 33(12):1877-87. PubMed ID: 2855996
    [No Abstract]   [Full Text] [Related]  

  • 7. Purification and reconstitution of calcium channel drug-receptor sites.
    Glossmann H; Striessnig J; Hymel L; Schindler H
    Ann N Y Acad Sci; 1988; 522():150-61. PubMed ID: 2454049
    [No Abstract]   [Full Text] [Related]  

  • 8. Primary structure of the receptor for calcium channel blockers from skeletal muscle.
    Tanabe T; Takeshima H; Mikami A; Flockerzi V; Takahashi H; Kangawa K; Kojima M; Matsuo H; Hirose T; Numa S
    Nature; 1987 Jul 23-29; 328(6128):313-8. PubMed ID: 3037387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Solubilization and isolation of dihydropyridine calcium channel blocker receptor from the rabbit skeletal muscle].
    Soldatov NM
    Biokhimiia; 1988 Sep; 53(9):1418-26. PubMed ID: 2849480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Calcium channels: structure and function of receptors for calcium channel blockers in skeletal muscle].
    Hofmann F; Schneider T; Röhrkasten A; Nastainczyk W; Sieber M; Ruth P; Flockerzi V
    Arzneimittelforschung; 1989 Jan; 39(1A):164-8. PubMed ID: 2541734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular pharmacology of the calcium channel: evidence for subtypes, multiple drug-receptor sites, channel subunits, and the development of a radioiodinated 1,4-dihydropyridine calcium channel label, [125I]iodipine.
    Glossmann H; Ferry DR; Goll A; Rombusch M
    J Cardiovasc Pharmacol; 1984; 6 Suppl 4():S608-21. PubMed ID: 6083403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation-contraction coupling. Proteins that bridge the gap.
    Agnew WS
    Nature; 1988 Jul; 334(6180):299-300. PubMed ID: 2455870
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of the calcium entry blocker receptor complex in cardiac sarcolemmal membrane vesicles.
    Kaczorowski GJ; Garcia ML; King VF
    Prog Clin Biol Res; 1988; 252():29-34. PubMed ID: 2450371
    [No Abstract]   [Full Text] [Related]  

  • 14. Chemical and pharmacological approaches to the definition and quantitation of calcium channels.
    Gengo PJ; Luchowski E; Rampe DE; Rutledge A; Triggle AM; Triggle DJ; Janis RA
    Cold Spring Harb Symp Quant Biol; 1983; 48 Pt 1():279-85. PubMed ID: 6327161
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits.
    Leung AT; Imagawa T; Campbell KP
    J Biol Chem; 1987 Jun; 262(17):7943-6. PubMed ID: 2439496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium channel activity in a purified dihydropyridine-receptor preparation of skeletal muscle.
    Smith JS; McKenna EJ; Ma JJ; Vilven J; Vaghy PL; Schwartz A; Coronado R
    Biochemistry; 1987 Nov; 26(22):7182-8. PubMed ID: 2447943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoaffinity labelling and phosphorylation of a 165 kilodalton peptide associated with dihydropyridine and phenylalkylamine-sensitive calcium channels.
    Hosey MM; Barhanin J; Schmid A; Vandaele S; Ptasienski J; O'Callahan C; Cooper C; Lazdunski M
    Biochem Biophys Res Commun; 1987 Sep; 147(3):1137-45. PubMed ID: 2444223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase.
    Curtis BM; Catterall WA
    Proc Natl Acad Sci U S A; 1985 Apr; 82(8):2528-32. PubMed ID: 2581248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol turnover as a functional probe for neuronal Ca2+ channels.
    Zernig G; Moshammer T; Glossmann H
    Prog Clin Biol Res; 1988; 252():41-5. PubMed ID: 2450375
    [No Abstract]   [Full Text] [Related]  

  • 20. (-)-[3H] desmethoxyverapamil labels multiple calcium channel modulator receptors in brain and skeletal muscle membranes: differentiation by temperature and dihydropyridines.
    Reynolds IJ; Snowman AM; Snyder SH
    J Pharmacol Exp Ther; 1986 Jun; 237(3):731-8. PubMed ID: 3012067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.