These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 24503877)
1. Right-hemisphere specialization for contour grouping. Volberg G Exp Psychol; 2014; 61(5):331-9. PubMed ID: 24503877 [TBL] [Abstract][Full Text] [Related]
2. Detection of cerebral lateralization of function using EEG alpha-contingent visual stimulation. Goodman DM; Beatty J; Mulholland TB Electroencephalogr Clin Neurophysiol; 1980 Apr; 48(4):418-31. PubMed ID: 6153603 [TBL] [Abstract][Full Text] [Related]
3. Hemispheric specialization for local and global processing of hierarchical visual stimuli in chimpanzees (Pan troglodytes). Hopkins WD Neuropsychologia; 1997 Mar; 35(3):343-8. PubMed ID: 9051682 [TBL] [Abstract][Full Text] [Related]
4. Who's got the global advantage? Visual field differences in processing of global and local shape. Gerlach C; Poirel N Cognition; 2020 Feb; 195():104131. PubMed ID: 31731118 [TBL] [Abstract][Full Text] [Related]
5. From local to global: Cortical dynamics of contour integration. Tanskanen T; Saarinen J; Parkkonen L; Hari R J Vis; 2008 Jun; 8(7):15.1-12. PubMed ID: 19146248 [TBL] [Abstract][Full Text] [Related]
6. A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields. Lux S; Marshall JC; Ritzl A; Weiss PH; Pietrzyk U; Shah NJ; Zilles K; Fink GR Neuroscience; 2004; 124(1):113-20. PubMed ID: 14960344 [TBL] [Abstract][Full Text] [Related]
8. Computational modeling and exploration of contour integration for visual saliency. Mundhenk TN; Itti L Biol Cybern; 2005 Sep; 93(3):188-212. PubMed ID: 16133586 [TBL] [Abstract][Full Text] [Related]
9. Contour integration with corners. Persike M; Meinhardt G Vision Res; 2016 Oct; 127():132-140. PubMed ID: 27542687 [TBL] [Abstract][Full Text] [Related]
10. Effect of temporal constraints on hemispheric asymmetries during spatial frequency processing. Peyrin C; Mermillod M; Chokron S; Marendaz C Brain Cogn; 2006 Dec; 62(3):214-20. PubMed ID: 16837115 [TBL] [Abstract][Full Text] [Related]
11. Contour integration across spatial frequency. Persike M; Olzak LA; Meinhardt G J Exp Psychol Hum Percept Perform; 2009 Dec; 35(6):1629-48. PubMed ID: 19968425 [TBL] [Abstract][Full Text] [Related]
12. The integration of straight contours (snakes and ladders): The role of spatial arrangement, spatial frequency and spatial phase. Bellacosa Marotti R; Pavan A; Casco C Vision Res; 2012 Oct; 71():44-52. PubMed ID: 22902640 [TBL] [Abstract][Full Text] [Related]
13. Component processes in contour integration: a direct comparison between snakes and ladders in a detection and a shape discrimination task. Vancleef K; Wagemans J Vision Res; 2013 Nov; 92():39-46. PubMed ID: 24051198 [TBL] [Abstract][Full Text] [Related]
14. Constant contour integration in peripheral vision for stimuli with good Gestalt properties. Kuai SG; Yu C J Vis; 2006 Dec; 6(12):1412-20. PubMed ID: 17209744 [TBL] [Abstract][Full Text] [Related]
15. Distinct effects of contour smoothness and observer bias on visual persistence. Zhou Z; Strother L J Vis; 2017 Feb; 17(2):8. PubMed ID: 28245488 [TBL] [Abstract][Full Text] [Related]
20. A shape-level flanker facilitation effect in contour integration and the role of shape complexity. Gillespie C; Vishwanath D Vision Res; 2019 May; 158():221-236. PubMed ID: 30797765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]