These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 24503945)
21. A systematic review of the effects of temperature and precipitation on pollen concentrations and season timing, and implications for human health. Schramm PJ; Brown CL; Saha S; Conlon KC; Manangan AP; Bell JE; Hess JJ Int J Biometeorol; 2021 Oct; 65(10):1615-1628. PubMed ID: 33877430 [TBL] [Abstract][Full Text] [Related]
22. Threat of allergenic airborne grass pollen in Szczecin, NW Poland: the dynamics of pollen seasons, effect of meteorological variables and air pollution. Puc M Aerobiologia (Bologna); 2011 Sep; 27(3):191-202. PubMed ID: 21892248 [TBL] [Abstract][Full Text] [Related]
23. The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland). Piotrowska K; Kubik-Komar A Aerobiologia (Bologna); 2012 Dec; 28(4):467-479. PubMed ID: 23087540 [TBL] [Abstract][Full Text] [Related]
24. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco). Aboulaich N; Achmakh L; Bouziane H; Trigo MM; Recio M; Kadiri M; Cabezudo B; Riadi H; Kazzaz M Int J Biometeorol; 2013 Mar; 57(2):197-205. PubMed ID: 22744802 [TBL] [Abstract][Full Text] [Related]
25. A new approach used to explore associations of current Ambrosia pollen levels with current and past meteorological elements. Matyasovszky I; Makra L; Csépe Z; Deák ÁJ; Pál-Molnár E; Fülöp A; Tusnády G Int J Biometeorol; 2015 Sep; 59(9):1179-88. PubMed ID: 25376632 [TBL] [Abstract][Full Text] [Related]
26. The pollen season dynamics and the relationship among some season parameters (start, end, annual total, season phases) in Kraków, Poland, 1991-2008. Myszkowska D; Jenner B; Stępalska D; Czarnobilska E Aerobiologia (Bologna); 2011 Sep; 27(3):229-238. PubMed ID: 21892249 [TBL] [Abstract][Full Text] [Related]
27. Variations in airborne pollen and spores in urban Guangzhou and their relationships with meteorological variables. Rahman A; Khan MHR; Luo C; Yang Z; Ke J; Jiang W Heliyon; 2021 Nov; 7(11):e08379. PubMed ID: 34825088 [TBL] [Abstract][Full Text] [Related]
28. Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992-1999). Estrella N; Menzel A; Krämer U; Behrendt H Int J Biometeorol; 2006 Sep; 51(1):49-59. PubMed ID: 16832654 [TBL] [Abstract][Full Text] [Related]
29. Variations in Grewling L; Jackowiak B; Smith M Aerobiologia (Bologna); 2014; 30(2):149-159. PubMed ID: 24817783 [TBL] [Abstract][Full Text] [Related]
30. The dynamics of the Corylus, Alnus, and Betula pollen seasons in the context of climate change (SW Poland). Malkiewicz M; Drzeniecka-Osiadacz A; Krynicka J Sci Total Environ; 2016 Dec; 573():740-750. PubMed ID: 27591524 [TBL] [Abstract][Full Text] [Related]
31. Effect of meteorological factors on Betula, Fraxinus and Quercus pollen concentrations in the atmosphere of Lublin and Szczecin, Poland. Weryszko-Chmielewska E; Puc M; Piotrowska K Ann Agric Environ Med; 2006; 13(2):243-9. PubMed ID: 17195996 [TBL] [Abstract][Full Text] [Related]
32. The impact of data assimilation into the meteorological WRF model on birch pollen modelling. Werner M; Bilińska-Prałat D; Kryza M; Guzikowski J; Malkiewicz M; Rapiejko P; Chłopek K; Dąbrowska-Zapart K; Lipiec A; Jurkiewicz D; Kalinowska E; Majkowska-Wojciechowska B; Myszkowska D; Piotrowska-Weryszko K; Puc M; Rapiejko A; Siergiejko G; Weryszko-Chmielewska E; Wieczorkiewicz A; Ziemianin M Sci Total Environ; 2022 Feb; 807(Pt 3):151028. PubMed ID: 34666079 [TBL] [Abstract][Full Text] [Related]
33. Poaceae, Secale spp. and Artemisia spp. pollen in the air at two sites of different degrees of urbanisation. Kruczek A; Puc M; Wolski T Ann Agric Environ Med; 2017 Mar; 24(1):70-74. PubMed ID: 28378978 [TBL] [Abstract][Full Text] [Related]
34. Prediction of the birch pollen season characteristics in Cracow, Poland using an 18-year data series. Dorota M Aerobiologia (Bologna); 2013 Mar; 29(1):31-44. PubMed ID: 23335835 [TBL] [Abstract][Full Text] [Related]
35. Associations between weather conditions and ragweed pollen variations in Szeged, Hungary. Matyasovszky I; Makra L; Csépe Z Arh Hig Rada Toksikol; 2012 Sep; 63(3):311-20. PubMed ID: 23152381 [TBL] [Abstract][Full Text] [Related]
36. The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. Sánchez Mesa JA; Galán C; Hervás C Int J Biometeorol; 2005 Jul; 49(6):355-62. PubMed ID: 15789221 [TBL] [Abstract][Full Text] [Related]
37. [Seasonal Dynamics of Airborne Pollens and Its Relationship with Meteorological Factors in Beijing Urban Area]. Meng L; Wang XK; Ouyang ZY; Ren YF; Wang QH Huan Jing Ke Xue; 2016 Feb; 37(2):452-8. PubMed ID: 27363130 [TBL] [Abstract][Full Text] [Related]
38. Influence of meteorological and ambient air quality factors on Jiapaer K; Halik Ü; Keyimu M; Bilal I; Shi L; Mumin R Heliyon; 2024 Feb; 10(3):e25124. PubMed ID: 38327407 [TBL] [Abstract][Full Text] [Related]
39. Gamma, Gaussian and logistic distribution models for airborne pollen grains and fungal spore season dynamics. Kasprzyk I; Walanus A Aerobiologia (Bologna); 2014; 30(4):369-383. PubMed ID: 25382927 [TBL] [Abstract][Full Text] [Related]
40. Prediction of annual variations in atmospheric concentrations of grass pollen. A method based on meteorological factors and grain crop estimates. Subiza J; Masiello JM; Subiza JL; Jerez M; Hinojosa M; Subiza E Clin Exp Allergy; 1992 May; 22(5):540-6. PubMed ID: 1628252 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]