These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24503945)

  • 61. Modelling atmospheric concentrations of grass pollen using meteorological variables in Melbourne, Australia.
    Erbas B; Chang JH; Newbigin E; Dhamarge S
    Int J Environ Health Res; 2007 Oct; 17(5):361-8. PubMed ID: 17924264
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Predicting Onset and Duration of Airborne Allergenic Pollen Season in the United States.
    Zhang Y; Bielory L; Cai T; Mi Z; Georgopoulos P
    Atmos Environ (1994); 2015 Feb; 103():297-306. PubMed ID: 25620875
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom.
    Smith M; Emberlin J
    Clin Exp Allergy; 2005 Oct; 35(10):1400-6. PubMed ID: 16238802
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Models for forecasting airborne Cupressaceae pollen levels in central Spain.
    Sabariego S; Cuesta P; Fernández-González F; Pérez-Badia R
    Int J Biometeorol; 2012 Mar; 56(2):253-8. PubMed ID: 21448770
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Predicting days of high allergenic risk during Betula pollination using weather types.
    Laaidi K
    Int J Biometeorol; 2001 Sep; 45(3):124-32. PubMed ID: 11594632
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Airborne pollen calendar of Lublin, Poland.
    Weryszko-Chmielewska E; Piotrowska K
    Ann Agric Environ Med; 2004; 11(1):91-7. PubMed ID: 15236504
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France).
    Laaidi M; Thibaudon M; Besancenot JP
    Int J Biometeorol; 2003 Dec; 48(2):65-73. PubMed ID: 12783292
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Source regions of ragweed pollen arriving in south-western Poland and the influence of meteorological data on the HYSPLIT model results.
    Bilińska D; Skjøth CA; Werner M; Kryza M; Malkiewicz M; Krynicka J; Drzeniecka-Osiadacz A
    Aerobiologia (Bologna); 2017; 33(3):315-326. PubMed ID: 28955109
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Pollen grains as allergenic environmental factors--new approach to the forecasting of the pollen concentration during the season.
    Myszkowska D; Majewska R
    Ann Agric Environ Med; 2014; 21(4):681-8. PubMed ID: 25528901
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantitative trends in airborne loads of Celtis sinensis pollen and associations with meteorological variables in a subtropical Australian environment.
    Green BJ; Dettmann M
    Ann Agric Environ Med; 2004; 11(2):297-302. PubMed ID: 15627340
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Correlation between meteorological conditions and Parietaria pollen concentration in Alassio, north-west Italy.
    Crimi P; Macrina G; Folli C; Bertoluzzo L; Brichetto L; Caviglia I; Fiorina A
    Int J Biometeorol; 2004 Sep; 49(1):13-7. PubMed ID: 15206015
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Influence of meteorological parameters on Olea pollen concentrations in Córdoba (south-western Spain).
    Vázquez LM; Galán C; Domínguez-Vilches E
    Int J Biometeorol; 2003 Dec; 48(2):83-90. PubMed ID: 12925873
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain).
    Rodriguez-Rajo FJ; Dopazo A; Jato V
    Ann Agric Environ Med; 2004; 11(1):35-44. PubMed ID: 15236496
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Airborne ragweed pollen concentration in north-eastern Croatia and its relationship with meteorological parameters.
    Stefanic E; Kovacevic V; Lazanin Z
    Ann Agric Environ Med; 2005; 12(1):75-9. PubMed ID: 16028870
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ragweed pollen in the air of Szczecin.
    Puc M
    Ann Agric Environ Med; 2004; 11(1):53-7. PubMed ID: 15236498
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Relationship of extinction coefficient, air pollution, and meteorological parameters in an urban area during 2007 to 2009.
    Sabetghadam S; Ahmadi-Givi F
    Environ Sci Pollut Res Int; 2014 Jan; 21(1):538-47. PubMed ID: 23812732
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Aeroallergens and Climate Change in Tulsa, Oklahoma: Long-Term Trends in the South Central United States.
    Levetin E
    Front Allergy; 2021; 2():726445. PubMed ID: 35386984
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multivariate analysis of ambient environmental factors and respiratory effects.
    Holberg CJ; O'Rourke MK; Lebowitz MD
    Int J Epidemiol; 1987 Sep; 16(3):399-410. PubMed ID: 3667038
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996-2005.
    Emberlin J; Smith M; Close R; Adams-Groom B
    Int J Biometeorol; 2007 Jan; 51(3):181-91. PubMed ID: 17024396
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Correlation between large-scale atmospheric fields and the olive pollen season in Central Italy.
    Avolio E; Pasqualoni L; Federico S; Fornaciari M; Bonofiglio T; Orlandi F; Bellecci C; Romano B
    Int J Biometeorol; 2008 Nov; 52(8):787-96. PubMed ID: 18618152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.